1
|
Braun V, Kanstinger A, Dahlem D. [Mycotoxin intoxication in 54 dogs after ingestion of walnuts]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2024; 52:211-219. [PMID: 39173649 DOI: 10.1055/a-2344-6146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE The aim of this retrospective study was to decribe the intoxication with tremorgenic mycotoxins subsequent to the ingestion of walnuts in a large population of dogs and the evaluation of the development of the clinical signs under the initiated treatment. MATERIAL AND METHODS The study included 54 dogs exhibiting signs of tremor, hyperesthesia, hyperthermia and ataxia, in particular a few hours following observed ingestion of walnuts or its justified suspicion. RESULTS The patients were presented to the clinic mostly during winter and spring. Fifty-three of 54 dogs were hospitalized for symptomatic, decontaminating and eliminating therapy (98%). Symptomatic treatment comprised of anticonvulsant therapy in 14 dogs (26%) and an antiemetic therapy in for half of the patients (n=27; 50%). A forced emesis for decontamination was undertaken in only 6 patients due to the severity of their neurological symptoms (11%). For further decontamination, an oral administration of activated charcoal after improvement of clinical signs (n=39; 72%). The majority of dogs (n=45; 83%) additionally received an intravenous lipid therapy for toxin elimination and isotonic crystalloid solution to compensate fluid losses. There were no side effects observed following the administration of intravenous lipid therapy. The majority of dogs were hospitalized for a duration of 2 days (n=44; 81%). In most dogs, examination was unremarkable on the day of their release (n=39; 72%). Potential long-term sequelae of the intoxication were not recorded in any patient. CONCLUSION Due to the lipophilic nature of mycotoxins, the use of intravenous lipid therapy may considered for toxin elimination purposes. The prognosis of mycotoxin intoxication following walnut ingestion is good with decontamination and elimination measures. CLINICAL RELEVANCE In the case of unspecific neurological signs such as tremor, ataxia and hyperesthesia as well as a corresponding preliminary report, an intoxication with mycotoxin-containing walnuts should be considered.
Collapse
Affiliation(s)
- Vanessa Braun
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| | - Alina Kanstinger
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| | - Dorothee Dahlem
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| |
Collapse
|
2
|
Development and application of a competitive enzyme immunoassay for the detection of penitrem A in fungal mycelium: Evidence for frequent occurrence of multiple indole-containing mycotoxins in mouldy foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Pickard C, Fortin J, Holmes D, Buchweitz J, Lehner A. A novel chemical marker of tremorgenic mycotoxicosis detected by gas-chromatography/mass-spectrometry. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tremorgenic mycotoxicosis can arise from dietary exposure to secondary metabolite products of various fungal species, particularly those from the Penicillium genus. Although general toxin screens often rely on gas chromatography-mass spectrometry (GC/MS) and well-developed mass spectral library databases, two principal representative Penicillium mycotoxins, roquefortine and penitrem A, are unamenable to GC/MS owing to high molecular weights, low volatilities and/or high thermal instabilities. Reliance on GC/MS screens alone could therefore inadvertently result in failure to collect evidence of exposure to such tremorgenic mycotoxins. In this report we describe a newly discovered tremorgenic marker compound (TMC), the presence of which correlates highly with conclusive exposure to Penicillium toxins in explanation of clinical manifestations of tremorgenic mycotoxicosis. According to detailed mass spectral deconvolution, the compound is 210.0892 molecular weight, and amenable to GC/MS whether chemically underivatized or derivatized by methylation or trimethylsilylation. 1D and 2D NMR (nuclear magnetic resonance) studies on the isolated compound determined the TMC to be the Penicillium product terrestric acid, C11H14O4, which matches the molecular formula determined by high resolution mass spectrometry and thus provides an excellent target for assessment of mycotoxicosis by GC/MS.
Collapse
Affiliation(s)
- C. Pickard
- Synlab VPG, Unit 8 Temple Point, Bullerthorpe Lane, Leeds, LS15 9JL, United Kingdom
| | - J.S. Fortin
- Michigan State University College of Veterinary Medicine, Department of Pathobiology & Diagnostic Investigation, Michigan State University, Lansing, MI 48910, USA
| | - D. Holmes
- Michigan State University, Max T. Rogers NMR Facility, Department of Chemistry, Lansing, MI 48824, USA
| | - J.P. Buchweitz
- Michigan State University College of Veterinary Medicine, Department of Pathobiology & Diagnostic Investigation, Michigan State University, Lansing, MI 48910, USA
- Michigan State University Veterinary Diagnostic Laboratory, Toxicology Section, Michigan State University, Lansing, MI 48910; USA
| | - A.F. Lehner
- Michigan State University Veterinary Diagnostic Laboratory, Toxicology Section, Michigan State University, Lansing, MI 48910; USA
| |
Collapse
|
4
|
Kępińska-Pacelik J, Biel W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins (Basel) 2021; 13:822. [PMID: 34822606 PMCID: PMC8622594 DOI: 10.3390/toxins13110822] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Mycotoxins can be found in many foods consumed by humans and animals. These substances are secondary metabolites of some fungi species and are resistant to technological processes (cooking, frying, baking, distillation, fermentation). They most often contaminate products of animal (beef, pork, poultry, lamb, fish, game meat, milk) and plant origin (cereals, processed cereals, vegetables, nuts). It is estimated that about 25% of the world's harvest may be contaminated with mycotoxins. These substances damage crops and may cause mycotoxicosis. Many mycotoxins can be present in food, together with mold fungi, increasing the exposure of humans and animals to them. In this review we characterized the health risks caused by mycotoxins found in food, pet food and feed. The most important groups of mycotoxins are presented in terms of their toxicity and occurrence.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
5
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
6
|
Gwinn JK, Uhlig S, Ivanova L, Fæste CK, Kryuchkov F, Robertson A. In Vitro Glucuronidation of Caribbean Ciguatoxins in Fish: First Report of Conjugative Ciguatoxin Metabolites. Chem Res Toxicol 2021; 34:1910-1925. [PMID: 34319092 PMCID: PMC9215509 DOI: 10.1021/acs.chemrestox.1c00181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.
Collapse
Affiliation(s)
- Jessica Kay Gwinn
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | | | - Fedor Kryuchkov
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| |
Collapse
|
7
|
Qusa MH, Abdelwahed KS, Meyer SA, El Sayed KA. Olive Oil Lignan (+)-Acetoxypinoresinol Peripheral Motor and Neuronal Protection against the Tremorgenic Mycotoxin Penitrem A Toxicity via STAT1 Pathway. ACS Chem Neurosci 2020; 11:3575-3589. [PMID: 32991800 DOI: 10.1021/acschemneuro.0c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Penitrem A, PA, is an indole diterpene alkaloid produced by several fungal species. PA acts as a selective Ca2+-dependent K-channels (Maxi-K, BK) antagonist in brain, causing motor system dysfunctions including tremors and seizures. However, its molecular mechanism at the peripheral nervous system (PNS) is still ambiguous. The Mediterranean diet key ingredient extra-virgin olive oil (EVOO) provides a variety of minor bioactive phenolics. (+)-Pinoresinol (PN) and (+)-1-acetoxypinoresinol (AC) are naturally occurring lignans in EVOO with diverse biological activities. AC exclusively occurs in EVOO, unlike PN, which occurs in several plants. Results suggest that PA neurotoxicity molecular mechanism is mediated, in part, through distortion of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PA selectively activated the STAT1 pathway, independently of the interferon-γ (IFN-γ) pathway, in vitro in Schwann cells and in vivo in Swiss albino mice sciatic nerves. Preliminary in vitro screening of an EVOO phenolic compounds library for the ability to reverse PA toxicity on Schwann cells revealed PN and AC as potential hits. In a Swiss albino mouse model, AC significantly minimized the fatality after intraperitoneal administration of PA fatal doses and normalized most biochemical factors by modulating the STAT1 expression. The olive lignan AC is a novel lead that can prevent the neurotoxicity of food-contaminating tremorgenic indole alkaloid mycotoxins.
Collapse
Affiliation(s)
- Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Sharon A. Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| |
Collapse
|