1
|
Mudge EM, Wilkins AL, Murray JS, Rise F, Miles CO. Investigation of 44-Methylgambierone Reactivity with Periodate: Structural Reassignment, Solvent Instability and Formation of a Furanoid Analogue. Toxicon 2024; 251:108154. [PMID: 39490818 DOI: 10.1016/j.toxicon.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Gambierones are sulfated polyethers produced by benthic dinoflagellates in the genera Gambierdiscus, Coolia and Fukuyoa. While relative toxicity data for gambierones suggests they are low compared with ciguatoxin analogues, gambierones have been suggested for use as marker compounds for environmental monitoring programs for the presence of Gambierdiscus in marine waters. The published structure of gambierone and analogues of it, including 44-methylgambierone (44-MeGAM), have been reported to possess 1,2- and 4,5-cis diols, while only the 1,2- diol unit has been shown to undergo periodate oxidation. An in-depth analysis of previously reported NMR data for 44-MeGAM in CD3OD showed that the C-4 stereochemistry of 44-MeGAM and other gamberiones was mis-assigned, that the 4-CH2-CHOH-CH2OH and OH groups are equatorially and axially oriented, respectively, rather than vice versa as previously reported. This re-examination of existing 44-MeGAM NMR data also showed that its C-12 and C-13 assignments (and those for other gambierones) should be reversed. In an effort to better understand the C-4 stereochemical and periodate reaction characteristics of gambierones (C-4 is an epimerizable hemiacetal carbon), additional NMR data was acquired in D6-DMSO. Unexpectedly, progressive conversion of 44-MeGAM to a long-term stable ring-A furanoid analogue was observed. A subsequent series of microscale stability trials identified several solvents that affected the solution-stability of 44-MeGAM, and these findings should be taken into consideration during isolation, handling, storage and bioassay evaluations of gambierones in future studies.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada.
| | - Alistair L Wilkins
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315 Oslo, Norway
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| |
Collapse
|
2
|
Loeffler CR, Spielmeyer A. Faster ciguatoxin extraction methods for toxicity screening. Sci Rep 2024; 14:21715. [PMID: 39289443 PMCID: PMC11408646 DOI: 10.1038/s41598-024-72708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Astrid Spielmeyer
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
4
|
Yokozeki T, Hama Y, Fujita K, Igarashi T, Hirama M, Tsumuraya T. Evaluation of relative potency of calibrated ciguatoxin congeners by near-infrared fluorescent receptor binding and neuroblastoma cell-based assays. Toxicon 2023; 230:107161. [PMID: 37201801 DOI: 10.1016/j.toxicon.2023.107161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Ciguatera fish poisoning (CFP) is a foodborne illness affecting > 50,000 people worldwide annually. It is caused by eating marine invertebrates and fish that have accumulated ciguatoxins (CTXs). Recently, the risk of CFP to human health, the local economy, and fishery resources have increased; therefore, detection methods are urgently needed. Functional assays for detecting ciguatoxins in fish include receptor binding (RBA) and neuroblastoma cell-based assay (N2a assay), which can detect all CTX congeners. In this study, we made these assays easier to use. For RBA, an assay was developed using a novel near-infrared fluorescent ligand, PREX710-BTX, to save valuable CTXs. In the N2a assay, a 1-day assay was developed with the same detection performance as the conventional 2-day assay. Additionally, in these assays, we used calibrated CTX standards from the Pacific determined by quantitative NMR for the first time to compare the relative potency of congeners, which differed significantly among previous studies. In the RBA, there was almost no difference in the binding affinity among congeners, showing that the differences in side chains, stereochemistry, and backbone structure of CTXs did not affect the binding affinity. However, this result did not correlate with the toxic equivalency factors (TEFs) based on acute toxicity in mice. In contrast, the N2a assay showed a good correlation with TEFs based on acute toxicity in mice, except for CTX3C. These findings, obtained with calibrated toxin standards, provide important insights into evaluating the total toxicity of CTXs using functional assays.
Collapse
Affiliation(s)
- Toshiaki Yokozeki
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan; Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Yuka Hama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Kazuhiro Fujita
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan
| | - Tomoji Igarashi
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama-shi, Tokyo, 206-0025, Japan
| | - Masahiro Hirama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Takeshi Tsumuraya
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan.
| |
Collapse
|
5
|
Campàs M, Leonardo S, Rambla-Alegre M, Sagristà N, Vaya R, Diogène J, Torréns M, Fragoso A. Cyclodextrin polymer clean-up method for the detection of ciguatoxins in fish with cell-based assays. Food Chem 2022; 401:134196. [PMID: 36115230 DOI: 10.1016/j.foodchem.2022.134196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 12/26/2022]
Abstract
Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA. In this work, γ-cyclodextrin-hexamethylene diisocyanate (γ-CD-HDI), γ-cyclodextrin-epichlorohydrin (γ-CD-EPI) and γ-CD-EPI conjugated to magnetic beads (γ-CD-EPI-MB) have been evaluated as clean-up materials for fish flesh extracts containing CTXs. The best results were achieved with γ-CD-HDI in column format, which showed a CTX1B recovery of 42% and 32% for Variola louti and Seriola dumerili, respectively, and allowed exposing cells to at least 400 mg/mL of fish flesh. This clean-up strategy provides at least 4.6 and 3.0-fold higher sensitivities to the assay for V.louti and S.dumerili, respectively, improving the reliability of CTX quantification.
Collapse
Affiliation(s)
- Mònica Campàs
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain.
| | - Sandra Leonardo
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Maria Rambla-Alegre
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Núria Sagristà
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Raquel Vaya
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mabel Torréns
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Alex Fragoso
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
6
|
Preparation of Ciguatoxin Reference Materials from Canary Islands (Spain) and Madeira Archipelago (Portugal) Fish. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ciguatoxins (CTXs) are naturally occurring neurotoxins that can accumulate in fish and cause Ciguatera Poisoning (CP) in seafood consumers. Ciguatoxic fish have been detected in tropical and subtropical regions of the world including the Pacific and Indian Oceans, the Caribbean Sea, and more recently in the northeast Atlantic Ocean. The biogeographic distribution of ciguatoxic fish appears to be expanding; however, the paucity of CTX standards and reference materials limits the ability of public health authorities to monitor for these toxins in seafood supply chains. Recent reports establish that Caribbean Ciguatoxin-1 (C-CTX1) is the principal toxin responsible for CP cases and outbreaks in the northeast Atlantic Ocean and that C-CTX congener profiles in contaminated fish samples match those from the Caribbean Sea. Therefore, in this work, C-CTX reference materials were prepared from fish obtained from the northeast Atlantic Ocean. The collection of fish specimens (e.g., amberjack, grouper, or snapper) was screened for CTX-like toxicity using the in vitro sodium channel mouse neuroblastoma cytotoxicity assay (N2a cell assay). Muscle and liver tissues from toxic specimens were pooled for extraction and purified products were ultimately profiled and quantified by comparison with authentic C-CTX1 using LC-MS/MS. This work presents a detailed protocol for the preparation of purified C-CTX reference materials to enable continued research and monitoring of the ciguatera public health hazard. To carry out this work, C-CTX1 was isolated and purified from fish muscle and liver tissues obtained from the Canary Islands (Spain) and Madeira archipelago (Portugal).
Collapse
|
7
|
Tudó À, Rambla-Alegre M, Flores C, Sagristà N, Aguayo P, Reverté L, Campàs M, Gouveia N, Santos C, Andree KB, Marques A, Caixach J, Diogène J. Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar Drugs 2022; 20:md20040236. [PMID: 35447910 PMCID: PMC9031360 DOI: 10.3390/md20040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.
Collapse
Affiliation(s)
- Àngels Tudó
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
- Correspondence: ; Tel.: +34-977-74-54-27 (ext. 1824)
| | - Cintia Flores
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Núria Sagristà
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Paloma Aguayo
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Laia Reverté
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, Direção de Serviços de Investigação das Pescas (DSI-DRP), Estrada da Pontinha, 9004-562 Funchal, Portugal;
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, 9050-027 Funchal, Portugal;
| | - Karl B. Andree
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Antonio Marques
- Portuguese Institute of Sea and Atmosphere (IPMA), Division of Aquaculture, Seafood Upgrading and Bioprospection (DivAV), Avenida de Brasília, 1449-006 Lisbon, Portugal;
| | - Josep Caixach
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| |
Collapse
|
8
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
9
|
Extraction and LC-MS/MS Analysis of Ciguatoxins: A Semi-Targeted Approach Designed for Fish of Unknown Origin. Toxins (Basel) 2021; 13:toxins13090630. [PMID: 34564634 PMCID: PMC8473320 DOI: 10.3390/toxins13090630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Ciguatoxins (CTXs) are polyether marine biotoxins that can cause ciguatera poisoning (CP) after the consumption of fish or invertebrates containing sub ppb levels; concentrations that present a challenge for current extraction and analysis methods. Here, a newly developed and (partly) validated single-day extraction protocol is presented. First, the fish sample is broken-down by enzymatic digestion, followed by extraction and extract clean-up by defatting and two solid-phase extractions. Final extracts were investigated using two different CTX-analysis methods; an in vitro cytotoxicity assay (N2a-assay) and by LC-MS/MS. Validation was performed for both fillet and freeze-dried samples of snapper, parrotfish, and grouper spiked with CTX1B, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, and CTX3C. Based on recovery rates (35–88%) and matrix effects (66–116%) determined by LC-MS/MS, the enzyme protocol is applicable to various matrices. The protocol was applied to naturally contaminated fish tissue (Lutjanus bohar) obtained during a CP incident in Germany. Several potential CTX congeners were identified by a two-tier LC-MS/MS approach (screening of sodium adducts, high-resolution or low-resolution confirmation via ammonium adducts). Inclusion of >30 known CTX congeners into the LC-MS/MS methods and single-day sample preparation make the method suitable for analysis of ciguatera suspect samples at sub ppb levels also with undisclosed CTX profiles.
Collapse
|
10
|
Estevez P, Castro D, Leão-Martins JM, Sibat M, Tudó A, Dickey R, Diogene J, Hess P, Gago-Martinez A. Toxicity Screening of a Gambierdiscus australes Strain from the Western Mediterranean Sea and Identification of a Novel Maitotoxin Analogue. Mar Drugs 2021; 19:md19080460. [PMID: 34436299 PMCID: PMC8400318 DOI: 10.3390/md19080460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023] Open
Abstract
Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.
Collapse
Affiliation(s)
- Pablo Estevez
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - David Castro
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - José Manuel Leão-Martins
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Manoëlla Sibat
- Laboratoire Phycotoxines, Ifremer, Rue de l’Île d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Angels Tudó
- Marine and Continental Waters Programme, Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Robert Dickey
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA;
| | - Jorge Diogene
- Marine and Continental Waters Programme, Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Philipp Hess
- Laboratoire Phycotoxines, Ifremer, Rue de l’Île d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Ana Gago-Martinez
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
- Correspondence: ; Tel.: +34-64-734-3417
| |
Collapse
|
11
|
Loeffler CR, Bodi D, Tartaglione L, Dell'Aversano C, Preiss-Weigert A. Improving in vitro ciguatoxin and brevetoxin detection: selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). HARMFUL ALGAE 2021; 103:101994. [PMID: 33980434 DOI: 10.1016/j.hal.2021.101994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Marine biotoxins accumulating in seafood products pose a risk to human health. These toxins are often potent in minute amounts and contained within complex matrices; requiring sensitive, reliable, and robust methods for their detection. The mouse neuroblastoma (Neuro-2a) cytotoxicity assay (N2a-assay) is a sensitive, high-throughput, in vitro method effective for detecting sodium channel-specific marine biotoxins. The N2a-assay can be conducted to distinguish between specific effects on voltage-gated sodium (NaV) channels, caused by toxins that activate (e.g., ciguatoxins (CTXs), brevetoxins (PbTxs)) or block (e.g., tetrodotoxins, saxitoxins) the target NaV. The sensitivity and specificity of the assay to compounds activating the NaV are achieved through the addition of the pharmaceuticals ouabain (O) and veratridine (V). However, these compounds can be toxic to Neuro-2a cells and their application at insufficient or excessive concentrations can reduce the effectiveness of this assay for marine toxin detection. Therefore, during growth incubation, Neuro-2a cells were exposed to O and V, and surviving cells exhibiting a lower sensitivity to O and V (OV-LS) were propagated. OV-LS Neuro-2a cells were selected for 60-80% survival when exposed to 0.22/0.022 mM O/V during the cytotoxicity assay. At these conditions, OV-LS N2a cells demonstrated a 3.5-fold higher survival rate 71% ± 7.9 SD (n = 232), and lower sensitivity to O/V, compared to the original Neuro-2a cells 20% ± 9.0 SD (n = 16). Additionally, OV-LS N2a cells were 1.3-2.6-fold more sensitive for detecting CTX3C 1.35 pg/ml, CTX1B 2.06 pg/ml, and PbTx-3 3.04 ng/ml compared to Neuro-2a cells using 0.1/0.01 mM O/V. Detection of CTX3C in a complex fish matrix using OV-LS cells was 0.0048 pg CTX3C/mg fish tissue equivalent. This work shows the potential for a significant improvement in sensitivity for CTX3C, CTX1B, and PbTx-3 using the OV-LS N2a-assay.
Collapse
Affiliation(s)
- Christopher R Loeffler
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de; Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Angelika Preiss-Weigert
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| |
Collapse
|
12
|
Sanchez-Henao A, García-Álvarez N, Padilla D, Ramos-Sosa M, Silva Sergent F, Fernández A, Estévez P, Gago-Martínez A, Diogène J, Real F. Accumulation of C-CTX1 in Muscle Tissue of Goldfish ( Carassius auratus) by Dietary Experience. Animals (Basel) 2021; 11:ani11010242. [PMID: 33477985 PMCID: PMC7835822 DOI: 10.3390/ani11010242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study developed an experimental model of goldfish (Carassius auratus) fed flesh contaminated with Caribbean ciguatoxin (C-CTX1). Fourteen goldfish were fed 0.014 ng CTX1B (Eq. g-1 of body weight) daily, and control goldfish received non-toxic flesh. CTX presence was determined by a cell-based assay on days 1, 8, 15, 29, 36, 43, and 84. Toxicity was detected in muscle from the second sampling and then seemed to stabilize at ~0.03 ng CTX1B Eq. g-1. After two weeks, all experimental goldfish developed lethargy and loss of brightness, but only two of them displayed erratic swimming and jerking movements near the sixth sampling. One of these fish had its toxic diet replaced by commercial food for 60 more days; the fish showed recovery signs within the first weeks and no CTX activity was detected. These results indicate that C-CTX1 could accumulate in goldfish muscle tissue and produce toxic symptoms, but also remarked on the detoxification and recovery capacity of this species.
Collapse
Affiliation(s)
- Andres Sanchez-Henao
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Daniel Padilla
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - María Ramos-Sosa
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Freddy Silva Sergent
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Antonio Fernández
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Pablo Estévez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Jorge Diogène
- Marine and Continental Waters Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Fernando Real
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| |
Collapse
|
13
|
Advances in Detecting Ciguatoxins in Fish. Toxins (Basel) 2020; 12:toxins12080494. [PMID: 32752046 PMCID: PMC7472146 DOI: 10.3390/toxins12080494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is currently the most common marine biotoxin food poisoning worldwide, associated with human consumption of circumtropical fish and marine invertebrates that are contaminated with ciguatoxins. Ciguatoxins are very potent sodium-channel activator neurotoxins, that pose risks to human health at very low concentrations (>0.01 ng per g of fish flesh in the case of the most potent Pacific ciguatoxin). Symptoms of CFP are nonspecific and intoxication in humans is often misdiagnosed. Presently, there is no medically approved treatment of ciguatera. Therefore, to mitigate the risks of CFP, reliable detection of ciguatoxins prior to consumption of fish tissue is acutely needed, which requires application of highly sensitive and quantitative analytical tests. During the last century a number of methods have been developed to identify and quantify the concentration of ciguatoxins, including in vivo animal assays, cell-based assays, receptor binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques based on coupling of liquid chromatography with mass spectrometry. Development of these methods, their various advantages and limitations, as well as future challenges are discussed in this review.
Collapse
|