1
|
Krzyżek P, Dudek B, Brożyna M, Krzyżanowska B, Junka A. Galleria mellonella larvae as a model for Helicobacter pylori biofilm formation under antibiotic stress. Microb Pathog 2025; 198:107121. [PMID: 39551111 DOI: 10.1016/j.micpath.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Helicobacter pylori is a common Gram-negative bacterium that inhabits the human stomach and causes a variety of gastric pathologies. One of the growing concerns is its dynamic spread of antibiotic resistance, a process in which biofilm formation is involved. Therefore, it is necessary to find an appropriate, high-throughput research model for the in vivo biofilm development by H. pylori. The aim of the current research report was to determine the usefulness of G. mellonella larvae in assessing the survival of a multidrug-resistant, strong biofilm producing H. pylori strain during its exposure to stress caused by clarithromycin. Using infection models lasting for 3 or 6 days, we confirmed the ability of the tested H. pylori strain to survive in the larvae. We noticed that exposure to clarithromycin significantly reduced the number of cultured bacteria relative to the control, although we did not observe any differences in the number of bacteria using time-lapse, live analysis of fluorescently stained larval hemolymph samples. In conclusion, we confirmed that the examined H. pylori strain can produce biofilm in G. mellonella larvae organism and is able to survive exposure to minimal inhibitory concentrations of clarithromycin (established in vitro) in in vivo conditions. Further refinement of methodologies for monitoring the viability of clinical H. pylori strains in the greater wax moth larvae will enhance the accuracy and reliability of this promising research model.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Krzyżek P. Helicobacter pylori Efflux Pumps: A Double-Edged Sword in Antibiotic Resistance and Biofilm Formation. Int J Mol Sci 2024; 25:12222. [PMID: 39596287 PMCID: PMC11594842 DOI: 10.3390/ijms252212222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Helicobacter pylori is a major pathogen associated with various gastric diseases. Despite decades of research, the treatment of H. pylori remains challenging. One of the primary mechanisms contributing to failures of therapies targeting this bacterium is genetic mutations in drug target sites, although the growing body of scientific data highlights that efflux pumps may also take part in this process. Efflux pumps are proteinaceous transporters actively expelling antimicrobial agents from the interior of the targeted cells and reducing the intracellular concentration of these compounds. Considering that efflux pumps contribute to both antimicrobial resistance and biofilm formation, an in-depth understanding of their properties may constitute a cornerstone in the development of novel therapeutics against H. pylori. In line with this, the aim of the current review is to describe the multitude of efflux pumps produced by H. pylori and present the data describing the involvement of these proteins in tolerance and/or resistance to various classes of antimicrobial substances.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
Ashkar Daw M, Azrad M, Peretz A. Associations between biofilm formation and virulence factors among clinical Helicobacter pylori isolates. Microb Pathog 2024; 196:106977. [PMID: 39321970 DOI: 10.1016/j.micpath.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) causes several gastrointestinal diseases. Its virulence factors contributing to disease development include biofilm formation, cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) proteins that induce host tissue damage. In addition, urease activity enables H. pylori growth in the gastric acidic environment. This work aimed to characterize bacterial factors associated with biofilm production among 89 clinical H. pylori isolates, collected from patient gastric biopsies. METHODS Biofilm production was detected using the crystal violet method. PCR was performed to determine vacA genotype (s1m1, s1m2, s2m1 and s2m2) and cagA gene presence. Urease activity was measured via the phenol red method. Susceptibility to six antibiotics was assessed by the Etest method. RESULTS Most H. pylori isolates produced biofilm. No association was found between biofilm-formation capacity and cagA presence or vacA genotype. Urease activity levels varied across isolates; no association was found between biofilm-formation and urease activity. Clarithromycin resistance was measured in 49 % of the isolates. Isolates susceptible to tetracycline were more commonly strong biofilm producers. In contrast, a significantly higher rate of strong biofilm producers was observed among resistant isolates to amoxicillin, levofloxacin and rifampicin, compared to susceptible isolates. Non-biofilm producers were more common among isolates sensitive to rifampicin and metronidazole, compared to resistant isolates. CONCLUSIONS Further studies are needed to understand the factors that regulate biofilm production in order to search for treatments for H. pylori biofilm destruction.
Collapse
Affiliation(s)
- Mariam Ashkar Daw
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| |
Collapse
|
4
|
Tong Y, Dang R, Yin Y, Men C, Xi R. A whole genome sequencing-based assay to investigate antibiotic susceptibility and strain lineage of Helicobacter pylori. Microb Pathog 2024; 197:107069. [PMID: 39490594 DOI: 10.1016/j.micpath.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Helicobacter pylori (H. pylori) antibiotic resistance has been widespread and increasing worldwide, which presented a significant challenge to the successful eradication of H. pylori infection. Identification of antibiotic resistance and exploration of potential resistance mechanisms are thus necessary for effective treatment. For this purpose, we herein develop a whole genome sequencing (WGS) assay based on next-generation sequencing (NGS) to detect the entire genome of 73 H. pylori strains isolated from gastric mucosa of patients in Tianjin, China, and analyzed the association between single-nucleotide polymorphism (SNP) in resistance-related genes and phenotypic sensitivity. We discovered the consistent relationship between genotypic and phenotypic resistance by A2143C/G in 23S rRNA for clarithromycin (Kappa: 0.882), N87K/I in gyrA for levofloxacin (Kappa: 0.883), and wild-type of pbp1 for amoxicillin. In addition, we obtained 4 super-resistant clinical strains of H. pylori, which formed thick, sticky biofilms, were extremely resistant to all antibiotics regardless of the present of mutations in antibiotic targets sites. Therefore, biofilm formation is also a mechanism of drug resistance, and biofilm-related proteins or genes are also expected to be used as screening markers for H. pylori resistance.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ruoyu Dang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Changjun Men
- Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin 300190, China.
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| |
Collapse
|
5
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Savitri CMA, Fauzia KA, Alfaray RI, Aftab H, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. Opportunities for Helicobacter pylori Eradication beyond Conventional Antibiotics. Microorganisms 2024; 12:1986. [PMID: 39458296 PMCID: PMC11509656 DOI: 10.3390/microorganisms12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to be associated with a significant risk of gastric cancer in addition to chronic gastritis, peptic ulcer, and MALT lymphoma. Although only a small percentage of patients infected with H. pylori develop gastric cancer, Gastric cancer causes more than 750,000 deaths worldwide, with 90% of cases being caused by H. pylori. The eradication of this bacterium rests on multiple drug regimens as guided by various consensus. However, the efficacy of empirical therapy is decreasing due to antimicrobial resistance. In addition, biofilm formation complicates eradication. As the search for new antibiotics lags behind the bacterium's ability to mutate, studies have been directed toward finding new anti-H. pylori agents while also optimizing current drug functions. Targeting biofilm, repurposing outer membrane vesicles that were initially a virulence factor of the bacteria, phage therapy, probiotics, and the construction of nanoparticles might be able to complement or even be alternatives for H. pylori treatment. This review aims to present reports on various compounds, either new or combined with current antibiotics, and their pathways to counteract H. pylori resistance.
Collapse
Affiliation(s)
- Camilia Metadea Aji Savitri
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Kartika Afrida Fauzia
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Research Centre for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong Science Center, Bogor 16915, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka 1000, Bangladesh;
| | - Ari Fahrial Syam
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Masrul Lubis
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Genome-Wide Microbiology, Research Center for Global and Local Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| |
Collapse
|
7
|
Krzyżek P, Migdał P, Krzyżanowska B, Duda-Madej A. Optimization of Helicobacter pylori Biofilm Formation in In Vitro Conditions Mimicking Stomach. Int J Mol Sci 2024; 25:9839. [PMID: 39337326 PMCID: PMC11432336 DOI: 10.3390/ijms25189839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori is one of the most common bacterial pathogens worldwide and the main etiological agent of numerous gastric diseases. The frequency of multidrug resistance of H. pylori is growing and the leading factor related to this phenomenon is its ability to form biofilm. Therefore, the establishment of a proper model to study this structure is of critical need. In response to this, the aim of this original article is to validate conditions of the optimal biofilm development of H. pylori in monoculture and co-culture with a gastric cell line in media simulating human fluids. Using a set of culture-based and microscopic techniques, we proved that simulated transcellular fluid and simulated gastric fluid, when applied in appropriate concentrations, stimulate autoaggregation and biofilm formation of H. pylori. Additionally, using a co-culture system on semi-permeable membranes in media imitating the stomach environment, we were able to obtain a monolayer of a gastric cell line with H. pylori biofilm on its surface. We believe that the current model for H. pylori biofilm formation in monoculture and co-culture with gastric cells in media containing host-mimicking fluids will constitute a platform for the intensification of research on H. pylori biofilms in in vitro conditions that simulate the human body.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| |
Collapse
|
8
|
Paes Dutra JA, Gonçalves Carvalho S, Soares de Oliveira A, Borges Monteiro JR, Rodrigues Pereira de Oliveira Borlot J, Tavares Luiz M, Bauab TM, Rezende Kitagawa R, Chorilli M. Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. Crit Rev Microbiol 2024; 50:728-749. [PMID: 37897442 DOI: 10.1080/1040841x.2023.2274835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Tais Maria Bauab
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Qian J, Li Z, Wang J, Lin Y, Yu Y. 6-gingerol and its derivatives inhibit Helicobacter pylori-induced gastric mucosal inflammation and improve gastrin and somatostatin secretion. Front Microbiol 2024; 15:1451563. [PMID: 39234535 PMCID: PMC11371576 DOI: 10.3389/fmicb.2024.1451563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
The resistance of Helicobacter pylori (H. pylori) has increased in recent years, prompting a trend in the research and development of new drugs. In our study, three derivatives (JF-1, JF-2, and JF-3) were synthesized using 6-gingerol as the main component, while JF-4, containing both 6-gingerol and 6-shogaol as the main components, was extracted from dried ginger. The minimum inhibitory concentrations (MICs), determined using the ratio dilution method, were 80 μg/mL for JF-1, 40 μg/mL for JF-2, 30 μg/mL for JF-3, 40 μg/mL for JF-4, 60 μg/mL for 6-gingerol standard (SS), and 0.03 μg/mL for amoxicillin (AMX). After treating H. pylori-infected mice, the inflammation of the gastric mucosa was suppressed. The eradication rate of H. pylori was 16.7% of JF-3 low-dose treatment (LDT), 25.0% of JF-3 high-dose treatment (HDT), 16.7% of JF-4 LDT, 16.7% of JF-4 HDT, 30% of SS LDT, 50% of SS HDT, and 36.4% of the positive control group (PCG). The levels of gastrin, somatostatin (SST), IFN-γ, IL-4, and IL-8 were significantly recovered in the JF-3 and JF-4 administration groups, but the effect was stronger in the high-dose group. These results demonstrate that 6-gingerol and its derivatives have significant anti-Helicobacter pylori effects and are promising potential treatments for H. pylori infection.
Collapse
Affiliation(s)
- Jiali Qian
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhennan Li
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jinhui Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxian Lin
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yingcong Yu
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
- The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Huang TT, Cao YX, Cao L. Novel therapeutic regimens against Helicobacter pylori: an updated systematic review. Front Microbiol 2024; 15:1418129. [PMID: 38912349 PMCID: PMC11190606 DOI: 10.3389/fmicb.2024.1418129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a strict microaerophilic bacterial species that exists in the stomach, and H. pylori infection is one of the most common chronic bacterial infections affecting humans. Eradicating H. pylori is the preferred method for the long-term prevention of complications such as chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. However, first-line treatment with triple therapy and quadruple therapy has been unable to cope with increasing antibacterial resistance. To provide an updated review of H. pylori infections and antibacterial resistance, as well as related treatment options, we searched PubMed for articles published until March 2024. The key search terms were "H. pylori", "H. pylori infection", "H. pylori diseases", "H. pylori eradication", and "H. pylori antibacterial resistance." Despite the use of antimicrobial agents, the annual decline in the eradication rate of H. pylori continues. Emerging eradication therapies, such as the development of the new strong acid blocker vonoprazan, probiotic adjuvant therapy, and H. pylori vaccine therapy, are exciting. However, the effectiveness of these treatments needs to be further evaluated. It is worth mentioning that the idea of altering the oxygen environment in gastric juice for H. pylori to not be able to survive is a hot topic that should be considered in new eradication plans. Various strategies for eradicating H. pylori, including antibacterials, vaccines, probiotics, and biomaterials, are continuously evolving. A novel approach involving the alteration of the oxygen concentration within the growth environment of H. pylori has emerged as a promising eradication strategy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Sedarat Z, Taylor-Robinson AW. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024; 13:392. [PMID: 38787244 PMCID: PMC11124246 DOI: 10.3390/pathogens13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world's human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases.
Collapse
Affiliation(s)
- Zahra Sedarat
- Cellular & Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran;
| | - Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 67000, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 1904, USA
| |
Collapse
|
12
|
Xie J, Peng J, Liu D, Zeng R, Qiu J, Shen L, Gong X, Liu D, Xie Y. Treatment failure is a key factor in the development of Helicobacter pylori resistance. Helicobacter 2024; 29:e13091. [PMID: 38780150 DOI: 10.1111/hel.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Helicobacter pylori eradication failure influences its antibiotic resistance. AIMS This study aimed to evaluate the effect of previous treatment failures on it, including the changes in the antibiotic resistance rates, minimal inhibitory concentration (MIC) distributions, and resistance patterns. MATERIALS AND METHODS This single-center retrospective study included 860 primary isolates and 247 secondary isolates. Antibiotic susceptibility testing was performed for amoxicillin, metronidazole, clarithromycin, levofloxacin, furazolidone, tetracycline, and rifampicin. The demographic data and detailed regimens were collected. RESULTS The primary resistance rates to amoxicillin, metronidazole, clarithromycin, levofloxacin, tetracycline, rifampin, and furazolidone were 5.93%, 83.84%, 28.82%, 26.28%, 0.35%, 1.16%, and 0%, while secondary were 25.10%, 92.31%, 79.76%, 63.16%, 1.06%, 3.19%, and 0%, respectively. The resistance rates to amoxicillin, metronidazole, clarithromycin, and levofloxacin increased significantly with the number of treatment failures accumulated, and showed a linear trend. The proportion of primary and secondary multidrug-resistant (MDR) isolates were 17.79% and 63.16%, respectively. The MIC values of amoxicillin, clarithromycin, and levofloxacin were elevated significantly with medication courses increased. CONCLUSION The prevalence of amoxicillin, clarithromycin, levofloxacin, and metronidazole resistance would increase rapidly following first-line treatment failure, as well as the MIC values of them. Clinicians should pay great attention to the first-line treatment to cure H. pylori infection successfully.
Collapse
Affiliation(s)
- Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Jianxiang Peng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Rong Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Jiayu Qiu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Liting Shen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Xiaomin Gong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Dongsheng Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi Province, China
| |
Collapse
|
13
|
Wang J, Hu Y, Xie Y. Hotspots and frontiers in Helicobacter pylori biofilm research: A bibliometric and visualization analysis from 1998 to 2023. Heliyon 2024; 10:e27884. [PMID: 38533074 PMCID: PMC10963315 DOI: 10.1016/j.heliyon.2024.e27884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Background Helicobacterpylori (H. pylori) biofilm formation is a key factor in refractory H. pylori infection. The aim of this study was to understand research trends in H. pylori biofilms. Methods The Web of Science Core Collection database was used to retrieve publications published from 1998 to 2023. Different kinds of software, EXCEL, an online bibliometric analysis platform, and the VOS viewer were used to evaluate and visualize the bibliometric data. Results In total, 184 publications were identified, and the number of publications increased annually. The USA made the greatest contributions to this research field, while Helicobacter was the most productive journal. Grande rossella published the most papers, and the most productive institution was Gabriele D'Annunzio university. Co-occurrence network maps revealed that the keyword "Helicobacter pylori" ranked first in research field, and the keyword of "biofilm formation" and "in vitro" began to appear in the past three to five years. The majority of the five most-cited articles (60%) were published in USA and focused on the mechanism of H. pylori biofilm formation. Conclusion The annual number of publications on H. pylori biofilms has increased steadily over the past two decades and will continue to increase. Future studies should focus on evaluate the pharmacological effects, efficacy and safety of these anti-biofilm treatments in animal models and clinical trials.
Collapse
Affiliation(s)
| | | | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
MOLODOZHNIKOVA N, BERESTOVA A, BERECHIKIDZE I, SHORINA D, MORUGINA O. Changes in the tissue elements of the gastric mucosa interacting with different strains of Helicobacter pylori, taking into consideration the patient's genotype. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:213-221. [PMID: 38966050 PMCID: PMC11220335 DOI: 10.12938/bmfh.2023-070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
The present study aimed to investigate the peculiarities of adaptation of tissue elements of the gastric mucosa during interaction with Helicobacter pylori, as determined by genetic characteristics of the bacterium and the host. Venous blood and biopsy samples of the mucosa of the antrum and body of the stomach from young patients (18 to 25 years old) were examined. The condition of the gastric mucosa was assessed using stained histological preparations. Venous blood was collected from the patients to ascertain the polymorphisms of the IL-lß and IL-IRN genes. The most pronounced changes were observed in the parameters of reparative regeneration of epithelial differentiation during colonization of the gastric mucosa by H. pylori strains carrying the CagA(+) and BabA2(+) genes. These included an increase in proliferation and apoptosis rates and alterations in epithelial differentiation markers characterized by elevated production of Shh and MUC5AC, as well as a reduction in the production of the protective mucin MUC6 by isthmus gland cells. The presence of the vacAs1 and vacAs2 genes of H. pylori results in a high level of apoptosis in epithelial cells without accelerating proliferation. It was found that after eradication, patients with preserved cellular infiltrates in their gastric mucosa plates were carriers of mainly the IL-1ß*T/IL-1RN*2R haplotypes after 12 months.
Collapse
Affiliation(s)
- Natalia MOLODOZHNIKOVA
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Anna BERESTOVA
- Institute of Clinical Morphology and Digital Pathology, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| | - Iza BERECHIKIDZE
- Department of Biology and General Genetics, I.M. Sechenov
First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow
119991, Russian Federation
| | - Dariya SHORINA
- Department of Polyclinic Therapy, I.M. Sechenov First Moscow
State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow 119991,
Russian Federation
| | - Olga MORUGINA
- Department of Nursing Management and Social Work, I.M.
Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya
str., Moscow 119991, Russian Federation
| |
Collapse
|
15
|
Childs SK, Jones AAD. A microtiter peg lid with ziggurat geometry for medium-throughput antibiotic testing and in situ imaging of biofilms. Biofilm 2023; 6:100167. [PMID: 38078058 PMCID: PMC10700155 DOI: 10.1016/j.bioflm.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria biofilm responses to disinfectants and antibiotics are quantified and observed using multiple methods, though microscopy, particularly confocal laser scanning microscopy (CLSM) is preferred due to speed, a reduction in user error, and in situ analysis. CLSM can resolve biological and spatial heterogeneity of biofilms in 3D with limited throughput. The microplate peg-lid-based assay, described in ASTM E2799-22, is a medium-throughput method for testing biofilms but does not permit in situ imaging. Breaking off the peg, as recommended by the manufacturer, risks sample damage, and is limited to easily accessible pegs. Here we report modifications to the peg optimized for in situ visualization and visualization of all pegs. We report similar antibiotic challenge recovery via colony formation following the ASTM E2799-22 protocol and in situ imaging. We report novel quantifiable effects of antibiotics on biofilm morphologies, specifically biofilm streamers. The new design bridges the MBEC® assays design that selects for biofilm phenotypes with in situ imaging needs.
Collapse
Affiliation(s)
| | - A-Andrew D. Jones
- Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Elshenawi Y, Hu S, Hathroubi S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics (Basel) 2023; 12:1260. [PMID: 37627679 PMCID: PMC10451559 DOI: 10.3390/antibiotics12081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects nearly half of the global population and is recognized as a group 1 carcinogen by the Word Health Organization. The global rise in antibiotic resistance has increased clinical challenges in treating H. pylori infections. Biofilm growth has been proposed to contribute to H. pylori's chronic colonization of the host stomach, treatment failures, and the eventual development of gastric diseases. Several components of H. pylori have been identified to promote biofilm growth, and several of these may also facilitate antibiotic tolerance, including the extracellular matrix, outer membrane proteins, shifted morphology, modulated metabolism, efflux pumps, and virulence factors. Recent developments in therapeutic approaches targeting H. pylori biofilm have shown that synthetic compounds, such as small molecule drugs and plant-derived compounds, are effective at eradicating H. pylori biofilms. These combined topics highlight the necessity for biofilm-based research in H. pylori, to improve current H. pylori-targeted therapeutic approaches and alleviate relative public health burden. In this review we discuss recent discoveries that have decoded the life cycle of H. pylori biofilms and current biofilm-targeted treatment strategies.
Collapse
Affiliation(s)
- Yasmine Elshenawi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Skander Hathroubi
- Spartha Medical, CRBS 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
17
|
Rokkas T, Ekmektzoglou K. Advances in the pharmacological and regulatory management of multidrug resistant Helicobacter pylori. Expert Rev Clin Pharmacol 2023; 16:1229-1237. [PMID: 37937850 DOI: 10.1080/17512433.2023.2282061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Antibiotic resistance of Helicobacter pylori (H. pylori) hampers the success of eradication and in recent years multidrug resistance (MDR) shows an increase worldwide. AREAS COVERED This review covers current aspects of pharmacological and regulatory management of MDR-resistant H. pylori infection. EXPERT OPINION MDR H. pylori is increasing worldwide and its prevalence varies both between continents and countries. High consumption and misuse of antibiotics, H. pylori treatment failures and bacterial factors such as mutations, efflux pumps and biofilms are among the factors associated with MDR. Important steps for confronting the rise of MDR H. pylori strains should follow the principles of antibiotic stewardship, i.e. eradication regimens should be optimized with regard to all aspects of therapy, including drugs, doses, formulation, frequency of administration, administration in relation to meals and duration of therapy that reliably achieve at least 90% (preferably >95%) cure rates in adherent patients with susceptible infections.
Collapse
Affiliation(s)
- Theodore Rokkas
- Gastroenterology Clinic, Henry Dunant Hospital, Athens, Greece
- Medical School, European University of Cyprus, Nicosia, Cyprus
| | - Konstantinos Ekmektzoglou
- Gastroenterology Clinic, Henry Dunant Hospital, Athens, Greece
- Medical School, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Fauzia KA, Aftab H, Miftahussurur M, Waskito LA, Tuan VP, Alfaray RI, Matsumoto T, Yurugi M, Subsomwong P, Kabamba ET, Akada J, Yamaoka Y. Genetic determinants of Biofilm formation of Helicobacter pylori using whole-genome sequencing. BMC Microbiol 2023; 23:159. [PMID: 37264297 PMCID: PMC10234030 DOI: 10.1186/s12866-023-02889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Infection with Helicobacter pylori as the cause of gastric cancer is a global public health concern. In addition to protecting germs from antibiotics, biofilms reduce the efficacy of H. pylori eradication therapy. The nucleotide polymorphisms (SNPs) related with the biofilm forming phenotype of Helicobacter pylori were studied. RESULTS Fifty-six H. pylori isolate from Bangladeshi patients were included in this cross-sectional study. Crystal violet assay was used to quantify biofilm amount, and the strains were classified into high- and low-biofilm formers As a result, strains were classified as 19.6% high- and 81.4% low-biofilm formers. These phenotypes were not related to specific clades in the phylogenetic analysis. The accessories genes associated with biofilm from whole-genome sequences were extracted and analysed, and SNPs among the previously reported biofilm-related genes were analysed. Biofilm formation was significantly associated with SNPs of alpA, alpB, cagE, cgt, csd4, csd5, futB, gluP, homD, and murF (P < 0.05). Among the SNPs reported in alpB, strains encoding the N156K, G160S, and A223V mutations were high-biofilm formers. CONCLUSIONS This study revealed the potential role of SNPs in biofilm formation and proposed a method to detect mutation in biofilm from whole-genome sequences.
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, 1000, Bangladesh
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
- Department of Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, 749000, Vietnam
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Michiyuki Yurugi
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Aomori, Japan
| | - Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Research Center for Infectious Sciences, Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA.
- Borneo Medical and Health Research Centre, University Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia.
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, 879-5593, Oita, Japan.
| |
Collapse
|
19
|
Medakina I, Tsapkova L, Polyakova V, Nikolaev S, Yanova T, Dekhnich N, Khatkov I, Bordin D, Bodunova N. Helicobacter pylori Antibiotic Resistance: Molecular Basis and Diagnostic Methods. Int J Mol Sci 2023; 24:ijms24119433. [PMID: 37298385 DOI: 10.3390/ijms24119433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Helicobacter pylori is one of the most common cause of human infections. Infected patients develop chronic active gastritis in all cases, which can lead to peptic ulcer, atrophic gastritis, gastric cancer and gastric MALT-lymphoma. The prevalence of H. pylori infection in the population has regional characteristics and can reach 80%. Constantly increasing antibiotic resistance of H. pylori is a major cause of treatment failure and a major problem. According to the VI Maastricht Consensus, two main strategies for choosing eradication therapy are recommended: individualized based on evaluating sensitivity to antibacterial drugs (phenotypic or molecular genetic method) prior to their appointment, and empirical, which takes into account data on local H. pylori resistance to clarithromycin and monitoring effectiveness schemes in the region. Therefore, the determination of H. pylori resistance to antibiotics, especially clarithromycin, prior to choosing therapeutic strategy is extremely important for the implementation of these treatment regimens.
Collapse
Affiliation(s)
- Irina Medakina
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Larisa Tsapkova
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Vera Polyakova
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Tatyana Yanova
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Natalia Dekhnich
- FSBEI HE Smolensk State Medical University of the Ministry of Health of Russia, 214019 Smolensk, Russia
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
- Department of Propaedeutic of Internal Diseases and Gastroenterology, FSBEI HE Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Dmitry Bordin
- SBHI Moscow Clinical Scientific Center, 111123 Moscow, Russia
- Department of Propaedeutic of Internal Diseases and Gastroenterology, FSBEI HE Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Department of General Medical Practice and Family Medicine, FSBEI HE Tver State Medical University of the Ministry of Health of Russia, 170100 Tver, Russia
| | | |
Collapse
|
20
|
Tian C, Yuan M, Tao Q, Xu T, Liu J, Huang Z, Wu Q, Pan Y, Zhao Y, Zhang Z. Discovery of Novel Resistance Mechanisms of Vibrio parahaemolyticus Biofilm against Aminoglycoside Antibiotics. Antibiotics (Basel) 2023; 12:antibiotics12040638. [PMID: 37107000 PMCID: PMC10135303 DOI: 10.3390/antibiotics12040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inappropriate use of antibiotics eventually leads to the emergence of antibiotic-resistant strains and invalidates the treatment of infectious diseases. Aminoglycoside antibiotics (AGAs) are a class of broad-spectrum cationic antibiotics widely used for the treatment of Gram-negative bacterial infections. Understanding the AGA resistance mechanism of bacteria would increase the efficacy of treating these infections. This study demonstrates a significant correlation between AGA resistance and the adaptation of biofilms by Vibrio parahaemolyticus (VP). These adaptations were the result of challenges against the aminoglycosides (amikacin and gentamicin). Confocal laser scanning microscope (CLSM) analysis revealed an enclosure type mechanism where the biological volume (BV) and average thickness (AT) of V. parahaemolyticus biofilm were significantly positively correlated with amikacin resistance (BIC) (p < 0.01). A neutralization type mechanism was mediated by anionic extracellular polymeric substances (EPSs). The biofilm minimum inhibitory concentrations of amikacin and gentamicin were reduced from 32 µg/mL to 16 µg/mL and from 16 µg/mL to 4 µg/mL, respectively, after anionic EPS treatment with DNase I and proteinase K. Here, anionic EPSs bind cationic AGAs to develop antibiotic resistance. Transcriptomic sequencing revealed a regulatory type mechanism, where antibiotic resistance associated genes were significantly upregulated in biofilm producing V. parahaemolyticus when compared with planktonic cells. The three mechanistic strategies of developing resistance demonstrate that selective and judicious use of new antibiotics are needed to win the battle against infectious disease.
Collapse
Affiliation(s)
- Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Tao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
21
|
Boyanova L, Hadzhiyski P, Gergova R, Markovska R. Evolution of Helicobacter pylori Resistance to Antibiotics: A Topic of Increasing Concern. Antibiotics (Basel) 2023; 12:antibiotics12020332. [PMID: 36830243 PMCID: PMC9952372 DOI: 10.3390/antibiotics12020332] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antibiotic resistance among Helicobacter pylori strains is the major cause of eradication failure. Resistance prevalence is dynamic and can greatly vary among countries over the years. We revealed H. pylori resistance trends for five antibiotics in 14 countries through articles predominantly published in 2018-2022, since the latest data can best show the most recent trends in resistance evolution. Amoxicillin resistance generally exhibited no evolution, yet it increased in Bulgaria, Iran, China, and Vietnam. Metronidazole resistance exhibited different trends, including an increase, a decrease and no evolution in six, three, and five studies, respectively. Clarithromycin resistance increased in Australia, Belgium, Bulgaria, Italy, Iran, and Taiwan, but remained stable in France, Spain, Russia, China, Chile, and Colombia. Tetracycline resistance was low and stable except in Iran. Levofloxacin resistance increased in four European and six other countries/regions, without significant increases in France, Spain, and Chile. In Chile, triple resistance also increased. In countries such as France and Spain, resistance to most antibiotics was stabilized, while in Bulgaria, Belgium, Iran and Taiwan, resistance to three or more agents was reported. Use of non-recommended regimens, national antibiotic consumption, patient's compliance, host factors, strain virulence, migrations, and azithromycin overuse during the COVID-19 pandemic can influence resistance evolution. New drugs, eradication regimens and diagnostic methods, such as next-generation sequencing can improve H. pylori infection control.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-91-72-730
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, “Acad. Ivan Evstatiev Geshov” blvd., 1606 Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
22
|
Zhang Y, Feng X, Bian L, Zhang Y, Li Q, Xu Y, She Q, Yan C, Lu G, Wu J, Xiao W, Ding Y, Deng B. Antibiotic Resistance of Helicobacter pylori and Related Risk Factors in Yangzhou, China: A Cross-Sectional Study. J Clin Med 2023; 12:jcm12030816. [PMID: 36769465 PMCID: PMC9917918 DOI: 10.3390/jcm12030816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The antibiotic resistance of Helicobacter pylori (H. pylori) is a common cause of treatment failure. Previous studies showed that H. pylori resistance may be related to some characteristics of patients. This study intended to investigate the resistance of H. pylori to five commonly used antibiotics and risk factors in Yangzhou, China. METHODS We recruited the subjects who joined the endoscopic screening program organized by the Affiliated Hospital of Yangzhou University between April 2018 and September 2019 and endoscopists would take biopsy samples from the antrum and the corpus of the stomach. The antrum biopsy specimens were used to culture H. pylori. Next, we extracted DNA from H. pylori strains and performed the specific DNA amplification. Finally, we use gene chip technology to test the susceptibility to clarithromycin, levofloxacin, metronidazole, amoxicillin and tetracycline. Multivariate logistic analyses were also performed to determine the risk factors for antibiotic resistance of H. pylori. RESULTS A total of 461 H. pylori strains were finally collected. The resistance rate of H. pylori to clarithromycin, levofloxacin, metronidazole, amoxicillin and tetracycline was 41.0%, 44.9%, 38.8%, 6.3% and 1.1%, respectively. In addition, 16 multi-resistance patterns were detected, and strains resistant to all five antibiotics were not found. Multivariate analysis showed that past medical history and clinical outcomes were significantly associated with the resistance to clarithromycin. Drinking, gastrointestinal symptoms and a family history of gastric cancer were significantly associated with the resistance of H. pylori to levofloxacin. Especially gastrointestinal symptoms were significantly associated with the resistance of H. pylori to any antibiotic. CONCLUSION The resistance rates of H. pylori to clarithromycin, levofloxacin and metronidazole were very high in Yangzhou, China, various factors were related to bacterial resistance, and grasping these influencing factors can guide treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
- Department of Emergency, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China
| | - Xinyi Feng
- Department of Gastroenterology, Wuzhong People’s Hospital of Suzhou, Suzhou 215000, China
| | - Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yemin Xu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Qiang She
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guotao Lu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Jian Wu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Weiming Xiao
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225001, China
- Correspondence:
| |
Collapse
|
23
|
Dewayani A, Afrida Fauzia K, Alfaray RI, Waskito LA, Doohan D, Rejeki PS, Alshawsh MA, Rezkitha YAA, Yamaoka Y, Miftahussurur M. Gastric microbiome changes in relation with Helicobacter pylori resistance. PLoS One 2023; 18:e0284958. [PMID: 37200323 DOI: 10.1371/journal.pone.0284958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
INTRODUCTION Inadequate antimicrobial treatment has led to multidrug-resistant (MDR) bacteria, including Helicobacter pylori (H. pylori), which one of the notable pathogens in the stomach. Antibiotic-induced changes in the microbiota can negatively affect the host. This study aimed to determine the influence of H. pylori resistance on the diversity and abundance of the stomach microbiome. METHODS Bacterial DNA was extracted from biopsy samples of patients presenting dyspepsia symptoms with H. pylori positive from cultures and histology. DNA was amplified from the V3-V4 regions of the 16S rRNA gene. In-vitro E-test was used to detect antibiotic resistance. Microbiome community analysis was conducted through α-diversity, β-diversity, and relative abundance. RESULTS Sixty-nine H. pylori positive samples were eligible after quality filtering. Following resistance status to five antibiotics, samples were classified into 24 sensitive, 24 single resistance, 16 double resistance, 5 triple resistance. Samples were mostly resistant to metronidazole (73.33%; 33/45). Comparation of four groups displayed significantly elevated α-diversity parameters under the multidrug resistance condition (all P <0.05). A notable change was observed in triple-resistant compared to sensitive (P <0.05) and double-resistant (P <0.05) groups. Differences in β-diversity by UniFrac and Jaccard were not significant in terms of the resistance (P = 0.113 and P = 0.275, respectively). In the triple-resistant group, the relative abundance of Helicobacter genera was lower, whereas that of Streptococcus increased. Moreover, the linear discriminant analysis effect size (LEfSe) was associated with the presence of Corynebacterium and Saccharimonadales in the single-resistant group and Pseudomonas and Cloacibacterium in the triple-resistant group. CONCLUSION Our results suggest that the resistant samples showed a higher trend of diversity and evenness than the sensitive samples. The abundance of H. pylori in the triple-resistant samples decreased with increasing cohabitation of pathogenic bacteria, which may support antimicrobial resistance. However, antibiotic susceptibility determined by the E-test may not completely represent the resistance status.
Collapse
Affiliation(s)
- Astri Dewayani
- Oita University Faculty of Medicine, Department of Infectious Disease Control, Yufu, Oita, Japan
- Faculty of Medicine, Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
| | - Kartika Afrida Fauzia
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
- Oita University Faculty of Medicine, Department of Environmental and Preventive Medicine, Yufu, Oita, Japan
- Faculty of Medicine, Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ricky Indra Alfaray
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
- Oita University Faculty of Medicine, Department of Environmental and Preventive Medicine, Yufu, Oita, Japan
| | - Langgeng Agung Waskito
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Department of Medical Physiology and Biochemistry, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Faculty of Medicine, Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
| | - Purwo Sri Rejeki
- Faculty of Medicine, Department of Medical Physiology and Biochemistry, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammed Abdullah Alshawsh
- Faculty of Medicine, Department of Pharmacology, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, School of Clinical Sciences, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Department of Internal Medicine, University of Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Yoshio Yamaoka
- Oita University Faculty of Medicine, Department of Environmental and Preventive Medicine, Yufu, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, United States of America
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, Japan
- Faculty of Medicine, Department of Internal Medicine, Division of Gastroentero-Hepatology, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Department of Internal Medicine, Division of Gastroentero-Hepatology, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
24
|
Ansari S, Yamaoka Y. Helicobacter pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: a Perspective of Clinical Relevance. Clin Microbiol Rev 2022; 35:e0025821. [PMID: 35404105 PMCID: PMC9491184 DOI: 10.1128/cmr.00258-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the recent decrease in overall prevalence of Helicobacter pylori infection, morbidity and mortality rates associated with gastric cancer remain high. The antimicrobial resistance developments and treatment failure are fueling the global burden of H. pylori-associated gastric complications. Accurate diagnosis remains the opening move for treatment and eradication of infections caused by microorganisms. Although several reports have been published on diagnostic approaches for H. pylori infection, most lack the data regarding diagnosis from a clinical perspective. Therefore, we provide an intensive, comprehensive, and updated description of the currently available diagnostic methods that can help clinicians, infection diagnosis professionals, and H. pylori researchers working on infection epidemiology to broaden their understanding and to select appropriate diagnostic methods. We also emphasize appropriate diagnostic approaches based on clinical settings (either clinical diagnosis or mass screening), patient factors (either age or other predisposing factors), and clinical factors (either upper gastrointestinal bleeding or partial gastrectomy) and appropriate methods to be considered for evaluating eradication efficacy. Furthermore, to cope with the increasing trend of antimicrobial resistance, a better understanding of its emergence and current diagnostic approaches for resistance detection remain inevitable.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
25
|
Hu S, Lv Y, Xu H, Zheng B, Xiao Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front Cell Infect Microbiol 2022; 12:953780. [PMID: 35967866 PMCID: PMC9366890 DOI: 10.3389/fcimb.2022.953780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia anophelis has recently gained global attention and is emerging as a cause of life-threatening nosocomial infections. The present study aimed to investigate the association between antimicrobial resistance and the ability to form biofilm among E. anophelis isolated from hospitalized patients in China. Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected. Antibiotic susceptibility was determined by the standard agar dilution method as a reference assay according to the Clinical and Laboratory Standards Institute. The biofilm formation ability was assessed using a culture microtiter plate method, which was determined using a crystal violet assay. Culture plate results were cross-checked by scanning electron microscopy imaging analysis. Among the 197 isolates, all were multidrug-resistant, and 20 were extensively drug-resistant. Clinical E. anophelis showed high resistance to current antibiotics, and 99% of the isolates were resistant to at least seven antibiotics. The resistance rate for aztreonam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as 100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (96%), and rifampin (94%). The biofilm formation results revealed that all strains could form biofilm. Among them, the proportions of strong, medium, and weak biofilm-forming strains were 41%, 42%, and 17%, respectively. Furthermore, the strains forming strong or moderate biofilm presented a statistically significant higher resistance than the weak formers (p < 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin, and ciprofloxacin. Although E. anophelis was notoriously resistant to large antibiotics, minocycline, doxycycline, and rifampin showed potent activity against this pathogen. The data in the present report revealed a positive association between biofilm formation and antibiotic resistance, which will provide a foundation for improved therapeutic strategies against E. anophelis infections in the future.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
26
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
27
|
Hou C, Yin F, Wang S, Zhao A, Li Y, Liu Y. Helicobacter pylori Biofilm-Related Drug Resistance and New Developments in Its Anti-Biofilm Agents. Infect Drug Resist 2022; 15:1561-1571. [PMID: 35411160 PMCID: PMC8994595 DOI: 10.2147/idr.s357473] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is one of the most common pathogenic bacterium worldwide, infecting about 50% of the world’s population. It is a major cause of several upper gastrointestinal diseases, including peptic ulcers and gastric cancer. The emergence of H. pylori resistance to antibiotics has been a major clinical challenge in the field of gastroenterology. In the course of H. pylori infection, some bacteria invade the gastric epithelium and are encapsulated into a self-produced matrix to form biofilms that protect the bacteria from external threats. Bacteria with biofilm structures can be up to 1000 times more resistant to antibiotics than planktonic bacteria. This implies that targeting biofilms might be an effective strategy to alleviate H. pylori drug resistance. Therefore, it is important to develop drugs that can eliminate or disperse biofilms. In recent years, anti-biofilm agents have been investigated as alternative or complementary therapies to antibiotics to reduce the rate of drug resistance. This article discusses the formation of H. pylori biofilms, the relationship between biofilms and drug resistance in H. pylori, and the recent developments in the research of anti-biofilm agents targeting H. pylori drug resistance.
Collapse
Affiliation(s)
- Chong Hou
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Fangxu Yin
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Song Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yingzi Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
- Correspondence: Yipin Liu, Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, Yantai, Shandong, 264100, People’s Republic of China, Tel +86-18953595711, Email
| |
Collapse
|
28
|
Krzyżek P, Migdał P, Grande R, Gościniak G. Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated With Resistance to Clarithromycin. Front Cell Infect Microbiol 2022; 12:868905. [PMID: 35402304 PMCID: PMC8990135 DOI: 10.3389/fcimb.2022.868905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in Helicobacter pylori is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of H. pylori. The study was carried out on 24 clinical strains with different resistance profiles (antibiotic-sensitive, mono-resistant, double-resistant and multidrug-resistant) against clarithromycin (CLR), metronidazole (MTZ) and levofloxacin (LEV). Using static conditions and a crystal violet staining method, a strong correlation was observed between biofilm formation and resistance to CLR but not MTZ or LEV. Based on the obtained results, three the strongest and three the weakest biofilm producers were selected and directed for a set of microfluidic experiments performed in the Bioflux system combined with fluorescence microscopy. Under continuous flow conditions, it was observed that strong biofilm producers formed twice as much of biofilm and created significantly more eDNA and in particular proteins within the biofilm matrix when compared to weak biofilm producers. Additionally, it was noticed that strong biofilm producers had higher tendency for autoaggregation and presented morphostructural differences (a greater cellular packing, shorter cells and a higher amount of both OMVs and flagella) in relation to weak biofilm counterparts. In conclusion, resistance to CLR in clinical H. pylori strains was associated with a broad array of phenotypical features translating to the ability of strong biofilm formation.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Paweł Krzyżek,
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
29
|
Abdel-Shafi S, El-Serwy H, El-Zawahry Y, Zaki M, Sitohy B, Sitohy M. The Association between icaA and icaB Genes, Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Staphylococci spp. Antibiotics (Basel) 2022; 11:389. [PMID: 35326851 PMCID: PMC8944761 DOI: 10.3390/antibiotics11030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sixty-six (66) Staphylococcus bacterial isolates were withdrawn from separate clinical samples of hospitalized patients with various clinical infections. Conventional bacteriological tests identified the species of all isolates, and standard microbiological techniques differentiated them into CoPS or CoNS. Their biofilm development was followed by an analysis via the MTP (microtiter tissue culture plates) technique, and we then investigated the presence/absence of icaA and icaB, which were qualified in the top-30 potent biofilm-forming isolates. Thirteen isolates (46.7%) showed the presence of one gene, six (20%) isolates exhibited the two genes, while ten (33.3%) had neither of them. The formation of staphylococci biofilms in the absence of ica genes may be related to the presence of other biofilm formation ica-independent mechanisms. CoPS was the most abundant species among the total population. S. aureus was the sole representative of CoPS, while S. epidermidis was the most abundant form of CoNS. Antibiotic resistance was developing against the most frequently used antimicrobial drugs, while vancomycin was the least-resisted drug. The totality of the strong and medium-strength film-forming isolates represented the majority proportion (80%) of the total investigated clinical samples. The biochemical pattern CoPS is associated with antibiotic resistance and biofilm formation and can be an alarming indicator of potential antibiotic resistance.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (H.E.-S.); (Y.E.-Z.)
| | - Heba El-Serwy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (H.E.-S.); (Y.E.-Z.)
| | - Yehia El-Zawahry
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (H.E.-S.); (Y.E.-Z.)
| | - Maysaa Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
30
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
31
|
Subsomwong P, Doohan D, Fauzia KA, Akada J, Matsumoto T, Yee TT, Htet K, Waskito LA, Tuan VP, Uchida T, Matsuhisa T, Yamaoka Y. Next-Generation Sequencing-Based Study of Helicobacter pylori Isolates from Myanmar and Their Susceptibility to Antibiotics. Microorganisms 2022; 10:microorganisms10010196. [PMID: 35056645 PMCID: PMC8781859 DOI: 10.3390/microorganisms10010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Evaluation of Helicobacter pylori resistance to antibiotics is crucial for treatment strategy in Myanmar. Moreover, the genetic mechanisms involved remain unknown. We aimed to investigate the prevalence of H. pylori infection, antibiotic resistance, and genetic mechanisms in Myanmar. One hundred fifty patients from two cities, Mawlamyine (n = 99) and Yangon (n = 51), were recruited. The prevalence of H. pylori infection was 43.3% (65/150). The successfully cultured H. pylori isolates (n = 65) were tested for antibiotic susceptibility to metronidazole, levofloxacin, clarithromycin, amoxicillin, and tetracycline by Etest, and the resistance rates were 80%, 33.8%, 7.7%, 4.6%, and 0%, respectively. In the multidrug resistance pattern, the metronidazole–levofloxacin resistance was highest for double-drug resistance (16/19; 84.2%), and all triple-drug resistance (3/3) was clarithromycin–metronidazole–levofloxacin resistance. Twenty-three strains were subjected to next-generation sequencing to study their genetic mechanisms. Interestingly, none of the strains resistant to clarithromycin had well-known mutations in 23S rRNA (e.g., A2142G, A2142C, and A2143G). New type mutation genotypes such as pbp1-A (e.g., V45I, S/R414R), 23S rRNA (e.g., T248C), gyrA (e.g., D210N, K230Q), gyrB (e.g., A584V, N679H), rdxA (e.g., V175I, S91P), and frxA (e.g., L33M) were also detected. In conclusion, the prevalence of H. pylori infection and its antibiotic resistance to metronidazole was high in Myanmar. The H. pylori eradication regimen with classical triple therapy, including amoxicillin and clarithromycin, can be used as the first-line therapy in Myanmar. In addition, next-generation sequencing is a powerful high-throughput method for identifying mutations within antibiotic resistance genes and monitoring the spread of H. pylori antibiotic-resistant strains.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Dalla Doohan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
| | - Than Than Yee
- Department of GI and HBP Surgery, No. (2) Defense Service General Hospital (1000 Bedded), Nay Pyi Taw 15013, Myanmar;
| | - Kyaw Htet
- Department of GI and HBP Surgery, No. (1) Defense Service General Hospital (1000 Bedded), Mingaladon, Yangon 11021, Myanmar;
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh 749000, Vietnam
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Nippon Medical School Tama Nagayama Hospital, Tama 206-8512, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Global Oita Medical Advanced Research Center for Health (GO-MARCH), Yufu 879-5593, Japan
- Correspondence: ; Tel.: +81-(97)-586-5740; Fax: +81-(97)-586-5749
| |
Collapse
|
32
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|
33
|
Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications. Nat Rev Gastroenterol Hepatol 2021; 18:613-629. [PMID: 34002081 DOI: 10.1038/s41575-021-00449-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a major human pathogen for which increasing antibiotic resistance constitutes a serious threat to human health. Molecular mechanisms underlying this resistance have been intensively studied and are discussed in this Review. Three profiles of resistance - single drug resistance, multidrug resistance and heteroresistance - seem to occur, probably with overlapping fundamental mechanisms and clinical implications. The mechanisms that have been most studied are related to mutational changes encoded chromosomally and disrupt the cellular activity of antibiotics through target-mediated mechanisms. Other biological attributes driving drug resistance in H. pylori have been less explored and this could imply more complex physiological changes (such as impaired regulation of drug uptake and/or efflux, or biofilm and coccoid formation) that remain largely elusive. Resistance-related attributes deployed by the pathogen cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes. Subsequent to the increasing antibiotic resistance, a substantial drop in H. pylori treatment efficacy has been noted globally. In the absence of an efficient vaccine, enhanced efforts are needed for setting new treatment strategies and for a better understanding of the emergence and spread of drug-resistant bacteria, as well as for improving diagnostic tools that can help optimize current antimicrobial regimens.
Collapse
Affiliation(s)
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan. .,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Prakosa AW, Miftahussurur M, Juniastuti J, Waskito LA, Doohan D, Fauzia KA, Rezkitha YAA, Sugihartono T, Syam AF, Uchida T, Yamaoka Y. Characterization of Helicobacter pylori tlyA and Its Association with Bacterial Density. Dig Dis 2021; 40:417-426. [PMID: 34515099 DOI: 10.1159/000518538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND In the recent studies, a less virulent Helicobacter pylori variant could still colonize the human stomach and induce gastric inflammation, suggesting the involvement of other virulence factors, such as TlyA hemolysin. Nevertheless, the association of TlyA in the pathogenesis of H. pylori infection remains unclear. We investigated the tlyA profile and determined its relationship with gastritis severity. METHODS An observational study was conducted using DNA stocks and secondary data from previous studies. The tlyA variant was examined by NGS and confirmed with polymerase chain reaction. Gastritis severity was categorized by the Updated Sydney System. The relationship between a variant of tlyA and gastritis severity was determined, in which discrete variables were tested using the χ2 test or Fisher exact test. RESULTS Two H. pylori tlyA variants were observed and characterized as tlyA1 and tlyA2. We noted a unique variant in the amino acid sequence 32-35 that is exclusively detected among H. pylori isolated from the Papua island. In addition, we observed that the tlyA variant had a significant association with the H. pylori density in the antral (p = 0.002). Histological analyses revealed that TlyA1 was associated with higher H. pylori density than TlyA2. However, we did not observe any significant association of tlyA with the infiltration of inflammation cells. CONCLUSIONS We observed 2 tlyA variants (tlyA1 and tlyA2). A significant association of tlyA with bacterial density suggested that tlyA plays a more significant role in the colonization process than its influence on the severity of inflammation in gastric mucosa.
Collapse
Affiliation(s)
- Adi Wasis Prakosa
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo Teaching Hospital, Surabaya, Indonesia.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Langgeng Agung Waskito
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dalla Doohan
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kartika Afrida Fauzia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Faculty of Medicine, University of Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Titong Sugihartono
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo Teaching Hospital, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo Teaching Hospital, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
35
|
Effects of Lactobacillus salivarius LN12 in Combination with Amoxicillin and Clarithromycin on Helicobacter pylori Biofilm In Vitro. Microorganisms 2021; 9:microorganisms9081611. [PMID: 34442690 PMCID: PMC8399496 DOI: 10.3390/microorganisms9081611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a highly prevalent and harmful gastrointestinal pathogen. Antibiotic resistance and biofilm complexity have led to a decrease in the cure rate. Probiotics are considered to be an adjuvant therapy for clinical Helicobacter pylori infections. However, there is no substantial explanation for the adjuvant role of probiotics on H. pylori biofilm. In this study, the effects of probiotics in combination with amoxicillin (AMX) and clarithromycin (CLR) on H. pylori biofilms were explored in vitro for the first time. The minimum inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC) for H. pylori was determined by the microbroth dilution method, and the plate counting method was used to determine the minimum biofilm removal concentration (MBEC) and survival rate for H. pylori biofilm. The biofilm structure was observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), protein and polysaccharide contents in extracellular polymeric substances (EPS) were determined by the Bradford method and the phenol-sulfate method, respectively. The gene expression levels of cagA and vacA were evaluated by real-time qPCR. Among the ten H. pylori strains, the clinical strain 3192 showed the strongest film-forming ability, the 3192 biofilms significantly improved the resistance to AMX and CLR, and AMX and CLR showed antagonistic effects on planktonic 3192 cells. When the Lactobacillus salivarius LN12 cell-free supernatant (CFS) was in combination with AMX and CLR, the 3192 biofilm structure was destroyed to a greater extent than when separately; more biofilm biomass and protein in EPS was decreased; and the downregulation effect of the virulence gene vacA was also greater than that of single use. In this study, we suggest that the addition of LN12 to AMX and CLR may enhance the therapeutic effect of triple therapy, especially for the treatment of H. pylori biofilms.
Collapse
|
36
|
Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020; 9:pathogens9121062. [PMID: 33353223 PMCID: PMC7766044 DOI: 10.3390/pathogens9121062] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of H. pylori in the stomach may also be linked to the ability of this pathogen to form biofilms. Initially, biofilms produced by H. pylori were strongly associated by scientists with water distribution systems and considered as a survival mechanism outside the host and a source of fecal-oral infections. In the course of the last 20 years, however, this trend has changed and now the most attention is focused on the biomedical aspect of this structure and its potential contribution to the therapeutic difficulties of H. pylori. Taking into account this fact, the aim of the current review is to discuss the phenomenon of H. pylori biofilm formation and present this mechanism as a resultant of the virulence and adaptive responses of H. pylori, including morphological transformation, membrane vesicles secretion, matrix production, efflux pump activity, and intermicrobial communication. These mechanisms will be considered in the context of transcriptomic and proteomic changes in H. pylori biofilms and their modulating effect on the development of this complex structure.
Collapse
|
37
|
Krzyżek P, Paluch E, Gościniak G. Synergistic Therapies as a Promising Option for the Treatment of Antibiotic-Resistant Helicobacter pylori. Antibiotics (Basel) 2020; 9:antibiotics9100658. [PMID: 33007899 PMCID: PMC7599531 DOI: 10.3390/antibiotics9100658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium responsible for the development of gastric diseases. The issue of spreading antibiotic resistance of H. pylori and its limited therapeutic options is an important topic in modern gastroenterology. This phenomenon is greatly associated with a very narrow range of antibiotics used in standard therapies and, as a consequence, an alarmingly high detection of multidrug-resistant H. pylori strains. For this reason, scientists are increasingly focused on the search for new substances that will not only exhibit antibacterial effect against H. pylori, but also potentiate the activity of antibiotics. The aim of the current review is to present scientific reports showing newly discovered or repurposed compounds with an ability to enhance the antimicrobial activity of classically used antibiotics against H. pylori. To gain a broader context in their future application in therapies of H. pylori infections, their antimicrobial properties, such as minimal inhibitory concentrations and minimal bactericidal concentrations, dose- and time-dependent mode of action, and, if characterized, anti-biofilm and/or in vivo activity are further described. The authors of this review hope that this article will encourage the scientific community to expand research on the important issue of synergistic therapies in the context of combating H. pylori infections.
Collapse
|