1
|
Thomson CJ, Mino FR, Lopez DR, Maitre PP, Edgley SR, George JA. Proportional myoelectric control of a virtual bionic arm in participants with hemiparesis, muscle spasticity, and impaired range of motion. J Neuroeng Rehabil 2024; 21:222. [PMID: 39707399 DOI: 10.1186/s12984-024-01529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation. Current control strategies provide only binary, all-or-nothing control based on a linear threshold of muscle activity. METHODS In this study, we demonstrate the ability of participants with hemiparesis to finely regulate their muscle activity to proportionally control the position of a virtual bionic arm. Ten stroke survivors and ten healthy, aged-matched controls completed a target-touching task with the virtual bionic arm. We compared the signal-to-noise ratio (SNR) of the recorded electromyography (EMG) signals used to train the control algorithms and the task performance using root mean square error, percent time in target, and maximum hold time within the target window. Additionally, we looked at the correlation between EMG SNR, task performance, and clinical spasticity scores. RESULTS All stroke survivors were able to achieve proportional EMG control despite limited or no physical movement (i.e., modified Ashworth scale of 3). EMG SNR was significantly lower for the paretic arm than the contralateral nonparetic arm and healthy control arms, but proportional EMG control was similar across conditions for hand grasp. In contrast, proportional EMG control for hand extension was significantly worse for paretic arms than healthy control arms. The participants' age, time since their stroke, clinical spasticity rate, and history of botulinum toxin injections had no impact on proportional EMG control. CONCLUSIONS It is possible to provide proportional EMG control of assistive devices from a stroke survivor's paretic arm. Importantly, information regulating fine force output is still present in muscle activity, even in extreme cases of spasticity where there is no visible movement. Future work should incorporate proportional EMG control into upper-limb exoskeletons to enhance the dexterity of stroke survivors.
Collapse
Affiliation(s)
- Caleb J Thomson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Fredi R Mino
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Danielle R Lopez
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT, USA
| | - Patrick P Maitre
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Steven R Edgley
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Jacob A George
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Kamper D, Bansal N, Barry A, Seo NJ, Celian C, Vidakovic L, Stoykov ME, Roth E. Combining Cyproheptadine Hydrochloride With Targeted Muscle Activation Training to Treat Upper Extremity Stroke: A Randomized, Placebo-Controlled Trial. Arch Phys Med Rehabil 2024; 105:1938-1945. [PMID: 39033950 DOI: 10.1016/j.apmr.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To examine a treatment for upper extremity impairment in stroke survivors that combines administration of cyproheptadine hydrochloride with repetitive practice focused on control of muscle activation patterns. DESIGN Double-blind, randomized controlled trial. SETTINGS Laboratory within a free-standing rehabilitation hospital. PARTICIPANTS A total of 94 stroke survivors with severe, chronic hand impairment were randomly assigned to 1 of 4 treatment groups. INTERVENTIONS Participants received either a placebo or cyproheptadine hydrochloride in identical pill form. The daily dosage of cyproheptadine/placebo was gradually increased from 8 to 24 mg/d over 3 weeks and then maintained over the next 6 weeks while participants completed 18 therapy sessions. Therapy consisted of either (1) active practice of muscle activation patterns to play "serious" computer games or control a custom hand exoskeleton or (2) passive, cyclical finger stretching imposed by the exoskeleton. MAIN OUTCOME MEASURES Hand control was evaluated with the primary outcome measure of time to complete the Graded Wolf Motor Function Test (GWMFT) and secondary outcome measures including finger strength and spasticity. RESULTS Across the 88 participants who completed the study, a repeated-measures analysis of variance revealed a significant effect of GroupxEvaluation interaction on GWMFT (F=1.996, P=.026). The 3 groups receiving cyproheptadine and/or actively practicing muscle activation pattern control exhibited significant reduction in mean time to complete the GWMFT tasks; roughly one-third of these participants experienced at least a 10% reduction in completion time. Gains were maintained at the 1-month follow-up evaluation. The group receiving placebo and passive stretching did not show improvement. No significant differences among groups were observed in terms of changes in strength or spasticity. CONCLUSIONS Despite chronic, severe impairment, stroke survivors were able to complete the therapy focused on muscle activations and achieved statistically significant improvement in hand motor control. Cyproheptadine hydrochloride is a potential complementary treatment modality for stroke survivors with hand impairment.
Collapse
Affiliation(s)
- Derek Kamper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC.
| | - Naveen Bansal
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI
| | | | - Na Jin Seo
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC
| | | | | | - Mary Ellen Stoykov
- Shirley Ryan AbilityLab, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Elliot Roth
- Shirley Ryan AbilityLab, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2024:15459683241287731. [PMID: 39345118 DOI: 10.1177/15459683241287731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. OBJECTIVES This study investigated the effectiveness of contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery driven by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity, and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. METHODS Twenty-six prospectively enrolled chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. RESULTS Chronic stroke patients achieved significant motor improvement in both proximal and distal upper extremity with BCI therapy. Motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3/C4 motor electrodes and positively correlated with motor recovery across BCI therapy sessions. CONCLUSIONS BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients, which significantly correlated with theta-gamma CFC increases in the motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven rehabilitation in chronic stroke patients. TRIAL REGISTRATION Advarra Study: https://classic.clinicaltrials.gov/ct2/show/NCT04338971 and Washington University Study: https://classic.clinicaltrials.gov/ct2/show/NCT03611855.
Collapse
Affiliation(s)
- Nabi Rustamov
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Alexandre Carter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
- Neurolutions, Inc. St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Gill R, Banky M, Yang Z, Medina Mena P, Woo CCA, Bryant A, Olver J, Moore E, Williams G. The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review. Toxins (Basel) 2024; 16:347. [PMID: 39195757 PMCID: PMC11359732 DOI: 10.3390/toxins16080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin-A (BoNT-A) injections are effective for focal spasticity. However, the impact on muscle strength is not established. This study aimed to investigate the effect of BoNT-A injections on muscle strength in adult neurological conditions. Studies were included if they were Randomised Controlled Trials (RCTs), non-RCTs, or cohort studies (n ≥ 10) involving participants ≥18 years old receiving BoNT-A injection for spasticity in their upper and/or lower limbs. Eight databases (CINAHL, Cochrane, EMBASE, Google Scholar, Medline, PEDro, Pubmed, Web of Science) were searched in March 2024. The methodology followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in the Prospective Register of Systematic Reviews (PROSPERO: CRD42022315241). Quality was assessed using the modified Downs and Black checklist and the PEDro scale. Pre-/post-injection agonist, antagonist, and global strength outcomes at short-, medium-, and long-term time points were extracted for analysis. Following duplicate removal, 8536 studies were identified; 54 met the inclusion criteria (3176 participants) and were rated as fair-quality. Twenty studies were analysed as they reported muscle strength specific to the muscle injected. No change in agonist strength after BoNT-A injection was reported in 74% of the results. Most studies' outcomes were within six weeks post-injection, with few long-term results (i.e., >three months). Overall, the impact of BoNT-A on muscle strength remains inconclusive.
Collapse
Affiliation(s)
- Renée Gill
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
- School of Physiotherapy, The University of Melbourne, Parkville, Melbourne 3000, Australia (A.B.)
| | - Megan Banky
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
- School of Physiotherapy, The University of Melbourne, Parkville, Melbourne 3000, Australia (A.B.)
| | - Zonghan Yang
- School of Physiotherapy, The University of Melbourne, Parkville, Melbourne 3000, Australia (A.B.)
| | - Pablo Medina Mena
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
| | - Chi Ching Angie Woo
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
| | - Adam Bryant
- School of Physiotherapy, The University of Melbourne, Parkville, Melbourne 3000, Australia (A.B.)
| | - John Olver
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
| | - Elizabeth Moore
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
| | - Gavin Williams
- Department of Physiotherapy, Epworth Rehabilitation Epworth Healthcare Richmond, Melbourne 3121, Australia; (M.B.); (P.M.M.); (C.C.A.W.); (J.O.); (E.M.); (G.W.)
- School of Physiotherapy, The University of Melbourne, Parkville, Melbourne 3000, Australia (A.B.)
| |
Collapse
|
5
|
Ranzani R, Razzoli M, Sanson P, Song J, Galati S, Ferrarese C, Lambercy O, Kaelin-Lang A, Gassert R. Feasibility of Adjunct Therapy with a Robotic Hand Orthosis after Botulinum Toxin Injections in Persons with Spasticity: A Pilot Study. Toxins (Basel) 2024; 16:346. [PMID: 39195756 PMCID: PMC11360205 DOI: 10.3390/toxins16080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Upper-limb spasticity, frequent after central nervous system lesions, is typically treated with botulinum neurotoxin type A (BoNT-A) injections to reduce muscle tone and increase range of motion. However, performing adjunct physical therapy post-BoNT-A can be challenging due to residual weakness or spasticity. This study evaluates the feasibility of hand therapy using a robotic hand orthosis (RELab tenoexo) with a mobile phone application as an adjunct to BoNT-A injections. Five chronic spastic patients participated in a two-session pilot study. Functional (Box and Block Test (BBT), Action Research Arm Test (ARAT)), and muscle tone (Modified Ashworth Scale (MAS)) assessments were conducted to assess functional abilities and impairment, along with usability evaluations. In the first session, subjects received BoNT-A injections, and then they performed a simulated unsupervised therapy session with the RELab tenoexo in a second session a month later. Results showed that BoNT-A reduced muscle tone (from 12.2 to 7.4 MAS points). The addition of RELab tenoexo therapy was safe, led to functional improvements in four subjects (two-cube increase in BBT as well as 2.8 points in grasp and 1.3 points in grip on ARAT). Usability results indicate that, with minor improvements, adjunct RELab tenoexo therapy could enhance therapy doses and, potentially, long-term outcomes.
Collapse
Affiliation(s)
- Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
- Cereneo, Center for Neurology and Rehabilitation, Seestrasse 18, 6354 Vitznau, Switzerland
| | - Margherita Razzoli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Pierre Sanson
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Jaeyong Song
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland; (S.G.); (A.K.-L.)
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6962 Lugano, Switzerland; (S.G.); (A.K.-L.)
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, 8092 Zurich, Switzerland; (M.R.); (P.S.); (J.S.); (O.L.); (R.G.)
| |
Collapse
|
6
|
Heslot C, Khan O, Schnitzler A, Haldane C, David R, Reebye R. Enhancing Botulinum Toxin Injection Precision: The Efficacy of a Single Cadaveric Ultrasound Training Intervention for Improved Anatomical Localization. Toxins (Basel) 2024; 16:304. [PMID: 39057944 PMCID: PMC11281316 DOI: 10.3390/toxins16070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Ultrasound guidance can enhance existing landmark-based injection methods, even through a brief and single exposure during a cadaveric training course. A total of twelve participants were enrolled in this training program, comprising nine physical medicine and rehabilitation specialists, one pediatrician, and two physician assistants. For each participant, one upper-limb muscle and one lower-limb muscle were randomly chosen from the preselected muscle group. Subsequently, participants were tasked with injecting both of their chosen cadaveric muscles with 1 mL of acrylic paint using a manual needle palpation technique, relying solely on their knowledge of anatomic landmarks. Participants then underwent a personalized, one-to-one ultrasound teaching session, lasting approximately five minutes, conducted by two highly experienced instructors. Following this instructive phase, participants were tasked with a second round of injections, targeting the same two muscles in the lower and upper limbs. However, this time, the injections were performed using anatomical landmarks and ultrasound guidance. To facilitate differentiation from the initial injections, a distinct color of acrylic paint was employed. When employing the anatomical landmark-based approach, the overall success rate for injections was 67%, with 16 out of 24 targeted muscles accurately injected. With the incorporation of ultrasound guidance, the success rate was 92%, precisely targeting 22 out of the 24 muscles under examination. There was an improvement in injection accuracy achievable through the integration of ultrasound guidance, even with minimal training exposure. Our single cadaveric ultra-sound training program contributes valuable insights to the utilization of ultrasound for anatomy training to help optimize the targeting of BoNT-A.
Collapse
Affiliation(s)
- Camille Heslot
- Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada
- Faculty of Medicine, Paris Cité University, 75006 Paris, France
- Department of Physical Medicine and Rehabilitation, GH St Louis Lariboisière F. Widal, 75010 Paris, France
| | - Omar Khan
- Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada
- Hotel Dieu Shaver Health and Rehabilitation Centre, St. Catharines, ON L2T 4C2, Canada
| | - Alexis Schnitzler
- Faculty of Medicine, Paris Cité University, 75006 Paris, France
- Department of Physical Medicine and Rehabilitation, GH St Louis Lariboisière F. Widal, 75010 Paris, France
| | - Chloe Haldane
- Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada
| | - Romain David
- Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86000 Poitiers, France
- Department of Physical Medicine and Rehabilitation, Poitiers University Hospital, 86000 Poitiers, France
| | - Rajiv Reebye
- Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canadian Advances in Neuro-Orthopedics for Spasticity Congress (CANOSC), Kingston, ON K7K 1Z6, Canada
| |
Collapse
|
7
|
Hwang IS, Ryu JW, Jin S, Kim SA, Kim MS. Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises-A Randomized Controlled Trial. Toxins (Basel) 2024; 16:267. [PMID: 38922161 PMCID: PMC11209169 DOI: 10.3390/toxins16060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum toxin A (BONT/A) injections play a central role in the treatment of upper limb spasticity in stroke patients. We proposed structured stretching exercises to enhance the effect of post-stroke spasticity relief of the upper limbs following BONT/A injections. A total of 43 patients who had a stroke with grade 2 spasticity or higher on the Modified Ashworth Scale (MAS) in their upper-limb muscles were randomly assigned to the intervention (n = 21) or control group (n = 22). The former received structured stretching exercises after their BONT/A injections for 20 min, 5 days per week, for 6 months at a hospital, while the others conducted self-stretching exercises at home. The outcome measures were assessed before the intervention (T0) and after three (T1) and six months (T2). Significantly greater improvements in the MAS scores of the elbows, wrists, and fingers were found in the intervention group's patients at T1 and T2. The behavioral outcome measures, including shoulder pain, activities of daily living, and quality of life, and our electrophysiological studies also showed a significantly higher enhancement in this patient group. In conclusion, the structured stretching exercises plus BONT/A injections for six months showed a superior effect in relieving post-stroke upper-limb spasticity compared to self-stretching exercises.
Collapse
Affiliation(s)
- In-Su Hwang
- Department of Rehabilitation Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (I.-S.H.); (J.-W.R.); (S.J.); (S.-A.K.)
| | - Jin-Whan Ryu
- Department of Rehabilitation Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (I.-S.H.); (J.-W.R.); (S.J.); (S.-A.K.)
| | - Sol Jin
- Department of Rehabilitation Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (I.-S.H.); (J.-W.R.); (S.J.); (S.-A.K.)
| | - Soo-A Kim
- Department of Rehabilitation Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (I.-S.H.); (J.-W.R.); (S.J.); (S.-A.K.)
| | - Min-Su Kim
- Department of Rehabilitation Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea; (I.-S.H.); (J.-W.R.); (S.J.); (S.-A.K.)
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
8
|
Buzatu R, Luca MM, Castiglione L, Sinescu C. Efficacy and Safety of Botulinum Toxin in the Management of Temporomandibular Symptoms Associated with Sleep Bruxism: A Systematic Review. Dent J (Basel) 2024; 12:156. [PMID: 38920857 PMCID: PMC11203296 DOI: 10.3390/dj12060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sleep bruxism, characterized by involuntary grinding or clenching of teeth during sleep, poses significant challenges in management due to its potential to induce temporomandibular joint disorders (TMDs) and other related symptoms. The use of Botulinum toxin Type A (BoNT-A), also known as Botox®, has been proposed as a therapeutic intervention. This systematic review aims to evaluate the efficacy and safety of BoNT-A in the management of sleep bruxism, focusing on pain reduction, improvement in jaw function, reduction in bruxism episodes, and the incidence of adverse effects. An exhaustive search was conducted across PubMed, Scopus, and Embase databases up to January 2024, adhering to the PRISMA guidelines. Nine randomized clinical trials (RCTs) involving 137 participants were analyzed for efficacy and safety outcomes. The studies demonstrated a significant reduction in mean pain scores (from 7.1 to 0.2 at 6 months and 1 year post-treatment in one study) and a notable decrease in the number of bruxism events (from 4.97/h to 1.70/h in the BoNT-A group in another study). Additionally, improvements were observed in jaw stiffness and total sleep time. Adverse effects varied but were generally mild and transient, including injection site pain in 20% of participants in one study and cosmetic changes in smile in 15.4% of patients in another. These findings suggest that BoNT-A injections may provide some benefits for treating nocturnal bruxism, potentially reducing TMD symptoms like pain and improving jaw function. However, these findings are preliminary due to variability in study designs and the absence of detailed statistical analysis.
Collapse
Affiliation(s)
- Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Revolutiei Boulevard 9, 300041 Timisoara, Romania;
| | - Magda Mihaela Luca
- Department of Pediatric Dentistry, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Luca Castiglione
- Doctoral School, Faculty of General Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Cosmin Sinescu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
9
|
Coraci D, Maccarone MC, Ragazzo L, Tognolo L, Restivo DA, Santilli G, Moreira AL, Ferrara PE, Ronconi G, Masiero S. Botulinum toxin in the rehabilitation of painful syndromes: multiperspective literature analysis, lexical analysis and systematic review of randomized controlled trials. Eur J Transl Myol 2024; 34:12509. [PMID: 38767308 PMCID: PMC11264230 DOI: 10.4081/ejtm.2024.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024] Open
Abstract
Pain represents a common symptom of several diseases and is often associated with a reduction in rehabilitation outcomes and recovery. The effectiveness of pain alleviation by botulinum toxin has been recently demonstrated. We searched in PubMed the papers about this topic published in the last ten years, and we selected clinical trials, guidelines, meta-analyses, reviews, and systematic reviews. We used different approaches: multiperspective presentation, lexical evaluation, and systematic review. The systematic review was only performed for the randomized controlled trials. We predominantly found reviews and trials about the rehabilitation of stroke/brain injury and epicondylitis. The most common outcome measures were pain, function, and spasticity. Among the common words, pain was the most frequent and the terms were grouped into different families, especially concerning the outcomes. Rehabilitation showed a relatively low frequency. Finally, the systematic review showed moderate-low levels of bias which confirms the effectiveness of botulinum toxin for pain treatment. The current literature about botulinum toxin is wide and globally diffuse but with some limitations in study strategies and clearness in the formal presentation. The evidence justifies the use of botulinum toxin in treating pain in different diseases.
Collapse
Affiliation(s)
- Daniele Coraci
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| | | | - Lisa Ragazzo
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| | - Lucrezia Tognolo
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| | | | - Gabriele Santilli
- Department of Anatomical, Histological and Legal Medical Sciences and Science of the Locomotor System, Rome.
| | - Ana Lucila Moreira
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo.
| | | | | | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padua.
| |
Collapse
|
10
|
Sharma R, Ketchum NC, Curtiss HM. Fluoroscopic OnabotulinumtoxinA injection for Bertolotti Syndrome in refractory back pain: A letter to the editor. INTERVENTIONAL PAIN MEDICINE 2024; 3:100386. [PMID: 39239494 PMCID: PMC11372936 DOI: 10.1016/j.inpm.2024.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Ragav Sharma
- The Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Nicholas C Ketchum
- The Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Heather M Curtiss
- The Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
| |
Collapse
|
11
|
Kazerooni R, Healy S, Verduzco-Gutierrez M. Disparities in Access to Spasticity Chemodenervation Specialists in the United States: A Retrospective Cross-Sectional Study. Am J Phys Med Rehabil 2024; 103:203-207. [PMID: 38014884 DOI: 10.1097/phm.0000000000002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE The aim of the study is to explore variations in access to spasticity chemodenervation specialists across several geographical, ethnic, racial, and population density factors. DESIGN This is a retrospective cross-sectional study on Medicare Provider Utilization and Payment Data. Providers with substantial adult spasticity chemodenervation practices were included. Ratios were assessed across geographical regions as well as hospital referral regions. A multivariate linear regression model for the top 100 hospital referral regions by beneficiary population was created, using backward stepwise selection to eliminate variables with P values > 0.10 from final model. RESULTS A total of 566 providers with spasticity chemodenervation practices were included. Unadjusted results showed lower access in nonurban versus urban areas in the form of higher patient:provider ratios (83,106 vs. 51,897). Access was also lower in areas with ≥25% Hispanic populations (141,800 vs. 58,600). Multivariate linear regression results showed similar findings with urban hospital referral regions having significantly lower ratios (-45,764 [ P = 0.004] vs. nonurban) and areas with ≥25% Hispanic populations having significantly higher ratios (+96,249 [ P = 0.003] vs. <25% Hispanic areas). CONCLUSIONS Patients in nonurban and highly Hispanic communities face inequities in access to chemodenervation specialists. The Medicare data set analyzed only includes 12% of the US patient population; however, this elderly national cross-sectional cohort represents a saturated share of patients needing access to spasticity chemodenervation therapy. Future studies should venture to confirm whether findings are limited to this specialization, and strategies to improve access for these underserved communities should be explored.
Collapse
Affiliation(s)
- Rashid Kazerooni
- From the Merz Pharmaceuticals, LLC, Raleigh, North Carolina (RK); Department of Family and Community Medicine Residency Program, Mercy Health-Anderson Hospital, Cincinnati, Ohio (SH); and Department of Rehabilitation Medicine, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, Texas (MV-G)
| | | | | |
Collapse
|
12
|
Lu Z, Zhang Y, Li S, Zhou P. Botulinum toxin treatment may improve myoelectric pattern recognition in robot-assisted stroke rehabilitation. Front Neurosci 2024; 18:1364214. [PMID: 38486973 PMCID: PMC10937383 DOI: 10.3389/fnins.2024.1364214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, Desai Sethi Urology Institute, Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
13
|
Dewald HA, Yao J, Dewald JPA, Nader A, Kirsch RF. Peripheral nerve blocks of wrist and finger flexors can increase hand opening in chronic hemiparetic stroke. Front Neurol 2024; 15:1284780. [PMID: 38456150 PMCID: PMC10919218 DOI: 10.3389/fneur.2024.1284780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Hand opening is reduced by abnormal wrist and finger flexor activity in many individuals with stroke. This flexor activity also limits hand opening produced by functional electrical stimulation (FES) of finger and wrist extensor muscles. Recent advances in electrical nerve block technologies have the potential to mitigate this abnormal flexor behavior, but the actual impact of nerve block on hand opening in stroke has not yet been investigated. Methods In this study, we applied the local anesthetic ropivacaine to the median and ulnar nerve to induce a complete motor block in 9 individuals with stroke and observed the impact of this block on hand opening as measured by hand pentagonal area. Volitional hand opening and FES-driven hand opening were measured, both while the arm was fully supported on a haptic table (Unloaded) and while lifting against gravity (Loaded). Linear mixed effect regression (LMER) modeling was used to determine the effect of Block. Results The ropivacaine block allowed increased hand opening, both volitional and FES-driven, and for both unloaded and loaded conditions. Notably, only the FES-driven and Loaded condition's improvement in hand opening with the block was statistically significant. Hand opening in the FES and Loaded condition improved following nerve block by nearly 20%. Conclusion Our results suggest that many individuals with stroke would see improved hand-opening with wrist and finger flexor activity curtailed by nerve block, especially when FES is used to drive the typically paretic finger and wrist extensor muscles. Such a nerve block (potentially produced by aforementioned emerging electrical nerve block technologies) could thus significantly address prior observed shortcomings of FES interventions for individuals with stroke.
Collapse
Affiliation(s)
- Hendrik A. Dewald
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Antoun Nader
- Department of Anesthesiology, Northwestern University, Chicago, IL, United States
| | - Robert F. Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Cleveland FES Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
14
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Recovery in Chronic Stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.26.23294320. [PMID: 37693482 PMCID: PMC10491278 DOI: 10.1101/2023.08.26.23294320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background and Purpose Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. This study investigated the effectiveness of the IpsiHand System, a contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery affected by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity (proximal and distal), and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. Methods Thirty chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram (EEG) signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment (UEFM) served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. Results Chronic stroke patients achieved significant motor improvement with BCI therapy. We found significant improvement in both proximal and distal upper extremity motor function. Importantly, motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3 and C4 motor electrodes following BCI therapy. We observed significant positive correlations between motor recovery and theta gamma CFC increase across BCI therapy sessions. Conclusions BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients. This therapy was significantly correlated with changes in baseline cortical dynamics, specifically theta-gamma CFC increases in both the right and left motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven motor rehabilitation in chronic stroke patients.
Collapse
|
15
|
Elsner C, Kunz AS, Wagner N, Huflage H, Hübner S, Luetkens KS, Bley TA, Schmitt R, Ergün S, Grunz JP. MRI-Based Evaluation of the Flexor Digitorum Superficialis Anatomy: Investigating the Prevalence and Morphometry of the "Chiasma Antebrachii". Diagnostics (Basel) 2023; 13:2406. [PMID: 37510150 PMCID: PMC10378300 DOI: 10.3390/diagnostics13142406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Recent dissection studies resulted in the introduction of the term "chiasma antebrachii", which represents an intersection of the flexor digitorum superficialis (FDS) tendons for digits 2 and 3 in the distal third of the forearm. This retrospective investigation aimed to provide an MRI-based morphologic analysis of the chiasma antebrachii. In 89 patients (41 women, 39.3 ± 21.3 years), MRI examinations of the forearm (2010-2021) were reviewed by two radiologists, who evaluated all studies for the presence and length of the chiasma as well as its distance from the distal radioulnar and elbow joint. The chiasma antebrachii was identified in the distal third of the forearm in 88 patients (98.9%), while one intersection was located more proximally in the middle part. The chiasma had a median length of 28 mm (interquartile range: 24-35 mm). Its distances to the distal radioulnar and elbow joint were 16 mm (8-25 mm) and 215 mm (187-227 mm), respectively. T1-weighted post-contrast sequences were found to be superior to T2- or proton-density-weighted sequences in 71 cases (79.8%). To conclude, the chiasma antebrachii is part of the standard FDS anatomy. Knowledge of its morphology is important, e.g., in targeted injections of therapeutics or reconstructive surgery.
Collapse
Affiliation(s)
- Clara Elsner
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070 Würzburg, Germany
| | - Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Rainer Schmitt
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
- Department of Radiology, University Hospital, LMU Munich, Ziemessenstraße 6, 80336 Munich, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Gottlich C, Murphy A, Jain N, Grimes J. Use of botulinum toxin as a non-surgical treatment option for idiopathic hallux varus: a case report. J Surg Case Rep 2023; 2023:rjad423. [PMID: 37528913 PMCID: PMC10390077 DOI: 10.1093/jscr/rjad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Hallux varus presents with midline deviation of the hallux at the first metatarsophalangeal joint. If left untreated, it may lead to pain and difficulty with normal daily activities. Here, we present a case of spontaneous hallux varus in an 84-year-old female treated non-operatively with injection of botulinum toxin in the Abductor Hallucis Brevis. Ultrasound guidance with electromyography was used to assist in all injections. Near total symptomatic relief and resumption of daily activities was obtained for up to 12 weeks at a time. Radiographic correction seen was improvement from 14° to 7° on weight bearing radiographs. After five rounds of treatment, no adverse reactions had been observed.
Collapse
Affiliation(s)
- Caleb Gottlich
- Department of Orthopedic Surgery, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Alexandria Murphy
- Department of Orthopedic Surgery, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Neil Jain
- Correspondence address. Department of Orthopedic Surgery, Texas Tech University Health Science Center, 3601 4th St, Lubbock, TX 79430, USA. Tel: (806) 743-4115; Fax: (806)743-1305; E-mail:
| | - Jerry Grimes
- Department of Orthopedic Surgery, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
17
|
Bonanno M, Militi A, La Fauci Belponer F, De Luca R, Leonetti D, Quartarone A, Ciancarelli I, Morone G, Calabrò RS. Rehabilitation of Gait and Balance in Cerebral Palsy: A Scoping Review on the Use of Robotics with Biomechanical Implications. J Clin Med 2023; 12:jcm12093278. [PMID: 37176718 PMCID: PMC10179520 DOI: 10.3390/jcm12093278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Cerebral palsy (CP) is a congenital and permanent neurological disorder due to non-progressive brain damage that affects gross motor functions, such as balance, trunk control and gait. CP gross motor impairments yield more challenging right foot placement during gait phases, as well as the correct direction of the whole-body center of mass with a stability reduction and an increase in falling and tripping. For these reasons, robotic devices, thanks to their biomechanical features, can adapt easily to CP children, allowing better motor recovery and enjoyment. In fact, physiotherapists should consider each pathological gait feature to provide the patient with the best possible rehabilitation strategy and reduce extra energy efforts and the risk of falling in children affected by CP.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98124 Messina, Italy
| | - Angela Militi
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Francesca La Fauci Belponer
- Neuropsichiatria Infantile, Azienda Ospedaliera Universitaria (AOU), Policlinico "Gaetano Martino", 98125 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98124 Messina, Italy
| | - Danilo Leonetti
- Department of Biomedical, Dental and Morphological and Functional Images, Section of Orthopaedic and Traumatology, University of Messina, 98125 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98124 Messina, Italy
| | - Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- ASL 1 Abruzzo (Avezzano-Sulmona-L'Aquila), 67100 L'Aquila, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- San Raffaele Institute of Sulmona, 67039 Sulmona, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo, SS 113, C. da Casazza, 98124 Messina, Italy
| |
Collapse
|
18
|
Asimakidou E, Sidiropoulos C. A Bayesian Network Meta-Analysis and Systematic Review of Guidance Techniques in Botulinum Toxin Injections and Their Hierarchy in the Treatment of Limb Spasticity. Toxins (Basel) 2023; 15:toxins15040256. [PMID: 37104194 PMCID: PMC10145352 DOI: 10.3390/toxins15040256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Accurate targeting of overactive muscles is fundamental for successful botulinum neurotoxin (BoNT) injections in the treatment of spasticity. The necessity of instrumented guidance and the superiority of one or more guidance techniques are ambiguous. Here, we sought to investigate if guided BoNT injections lead to a better clinical outcome in adults with limb spasticity compared to non-guided injections. We also aimed to elucidate the hierarchy of common guidance techniques including electromyography, electrostimulation, manual needle placement and ultrasound. To this end, we conducted a Bayesian network meta-analysis and systematic review with 245 patients using the MetaInsight software, R and the Cochrane Review Manager. Our study provided, for the first time, quantitative evidence supporting the superiority of guided BoNT injections over the non-guided ones. The hierarchy comprised ultrasound on the first level, electrostimulation on the second, electromyography on the third and manual needle placement on the last level. The difference between ultrasound and electrostimulation was minor and, thus, appropriate contextualization is essential for decision making. Taken together, guided BoNT injections based on ultrasound and electrostimulation performed by experienced practitioners lead to a better clinical outcome within the first month post-injection in adults with limb spasticity. In the present study, ultrasound performed slightly better, but large-scale trials should shed more light on which modality is superior.
Collapse
|
19
|
Shi F, Rymer WZ, Son J. Ankle Joint Angle Influences Relative Torque Fluctuation during Isometric Plantar Flexion. Bioengineering (Basel) 2023; 10:bioengineering10030373. [PMID: 36978764 PMCID: PMC10045061 DOI: 10.3390/bioengineering10030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to investigate the influence of changes in muscle length on the torque fluctuations and on related oscillations in muscle activity during voluntary isometric contractions of ankle plantar flexor muscles. Eleven healthy individuals were asked to perform voluntary isometric contractions of ankle muscles at five different contraction intensities from 10% to 70% of maximum voluntary isometric contraction (MVIC) and at three different muscle lengths, implemented by changing the ankle joint angle (plantar flexion of 26°-shorter muscle length; plantar flexion of 10°-neutral muscle length; dorsiflexion of 3°-longer muscle length). Surface electromyogram (EMG) signals were recorded from the skin surface over the triceps surae muscles, and rectified-and-smoothed EMG (rsEMG) were estimated to assess the oscillations in muscle activity. The absolute torque fluctuations (quantified by the standard deviation) were significantly higher during moderate-to-high contractions at the longer muscle length. Absolute torque fluctuations were found to be a linear function of torque output regardless of muscle length. In contrast, the relative torque fluctuations (quantified by the coefficient of variation) were higher at the shorter muscle length. However, both absolute and relative oscillations in muscle activities remained relatively consistent at different ankle joint angles for all plantar flexors. These findings suggest that the torque steadiness may be affected by not only muscle activities, but also by muscle length-dependent mechanical properties. This study provides more insights that muscle mechanics should be considered when explaining the steadiness in force output.
Collapse
Affiliation(s)
- Fandi Shi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
| | - William Zev Rymer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jongsang Son
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
20
|
Huang C, Lu Z, Chen M, Klein CS, Zhang Y, Li S, Zhou P. Muscle innervation zone estimation from monopolar high-density M-waves using principal component analysis and radon transform. Front Physiol 2023; 14:1137146. [PMID: 37008017 PMCID: PMC10050562 DOI: 10.3389/fphys.2023.1137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
This study examined methods for estimating the innervation zone (IZ) of a muscle using recorded monopolar high density M waves. Two IZ estimation methods based on principal component analysis (PCA) and Radon transform (RT) were examined. Experimental M waves, acquired from the biceps brachii muscles of nine healthy subjects were used as testing data sets. The performance of the two methods was evaluated by comparing their IZ estimations with manual IZ detection by experienced human operators. Compared with manual detection, the agreement rate of the estimated IZs was 83% and 63% for PCA and RT based methods, respectively, both using monopolar high density M waves. In contrast, the agreement rate was 56% for cross correlation analysis using bipolar high density M waves. The mean difference in estimated IZ location between manual detection and the tested method was 0.12 ± 0.28 inter-electrode-distance (IED) for PCA, 0.33 ± 0.41 IED for RT and 0.39 ± 0.74 IED for cross correlation-based methods. The results indicate that the PCA based method was able to automatically detect muscle IZs from monopolar M waves. Thus, PCA provides an alternative approach to estimate IZ location of voluntary or electrically-evoked muscle contractions, and may have particular value for IZ detection in patients with impaired voluntary muscle activation.
Collapse
Affiliation(s)
- Chengjun Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Zhiyuan Lu, ; Ping Zhou,
| | - Maoqi Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Cliff S. Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
- TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Zhiyuan Lu, ; Ping Zhou,
| |
Collapse
|
21
|
Fan J, Fu H, Xie X, Zhong D, Li Y, Liu X, Zhang H, Zhang J, Huang J, Li J, Jin R, Zheng Z. The effectiveness and safety of repetitive transcranial magnetic stimulation on spasticity after upper motor neuron injury: A systematic review and meta-analysis. Front Neural Circuits 2022; 16:973561. [PMID: 36426136 PMCID: PMC9679509 DOI: 10.3389/fncir.2022.973561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
To systematically evaluate the effectiveness and safety of repetitive transcranial magnetic stimulation (rTMS) on spasticity after upper motor neuron (UMN) injury. Eight electronic databases were searched from inception to August 6, 2022. Randomized controlled trials (RCTs) investigating the effectiveness and safety of rTMS on spasticity after UMN injury were retrieved. Two reviewers independently screened studies, extracted data, and assessed the risk of bias. Review Manager 5.3 and Stata 14.0 software were used to synthesize data. The certainty of the evidence was appraised with the Grade of Recommendation, Assessment, Development and Evaluation tool. Forty-two studies with a total of 2,108 patients were included. The results of meta-analysis revealed that, compared with control group, rTMS could significantly decrease scores of the Modified Ashworth Scale (MAS) in patients with UMN injury. The subgroup analysis discovered that rTMS effectively decreased the MAS scores in patients with stroke. Meanwhile, rTMS treatment > 10 sessions has better effect and rTMS could decrease the MAS scores of upper limb. Thirty-three patients complained of twitching facial muscles, headache and dizziness, etc. In summary, rTMS could be recommended as an effective and safe therapy to relieve spasticity in patients with UMN injury. However, due to high heterogeneity and limited RCTs, this conclusion should be treated with caution.
Collapse
Affiliation(s)
- Jin Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Hui Fu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolong Xie
- Department of Rehabilitation Medicine, The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxi Huang
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Juan Li,
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Rongjiang Jin,
| | - Zhong Zheng
- Mental Health Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China,Zhong Zheng,
| |
Collapse
|
22
|
Ajuz D, Oliveira MD, Fernandes JCH, Fernandes GVDO. Facial Hemiplegia Treated with Botulinum Toxin: A Case Report. Diseases 2022; 10:67. [PMID: 36278566 PMCID: PMC9590075 DOI: 10.3390/diseases10040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Facial hemiplegia happens when the seventh cranial nerve is inflamed, causing a dysfunction of the facial nerve in specific regions. This case report brings a complex case of facial hemiplegia, a non-temporary lesion caused by a traumatic accident, which had a more conservative approach, treating the patient with botulinum toxin. After explanation of treatment outcomes, the patient favored treatment on a unilateral side with botulinum toxin applied locally to the muscles. It was applied on her left side, in order to change the muscles tonus and improve the esthetic. The patient adhered to immediate and short-term instructions following the procedure, including movement limitation and skin exposure avoidance. At 2 weeks, the patient returned to follow-up, and the result was checked. After around 6-month follow-up, the patient was reassessed, and a new application was done. The patient tried to contract the procerus and corrugator muscles which were treated, and periorbicular region that was corrected. After contracting the frontal muscle, a satisfactory result was also seen in the frontal area. While limited to a single case presentation, botulinum toxin may be an effective short-term tool for treatment of facial hemiplegia to establish an effective esthetic result.
Collapse
Affiliation(s)
- Demétrio Ajuz
- Implant Dentistry, Rio de Janeiro 22031-071, Brazil
- Brazilian Academy of Dentistry (AcBO), Rio de Janeiro 22031-071, Brazil
| | - Mauro D. Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 21710-232, Brazil
| | | | - Gustavo Vicentis de Oliveira Fernandes
- Brazilian Academy of Dentistry (AcBO), Rio de Janeiro 22031-071, Brazil
- Periodontics and Oral Medicine Department, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
The Effects of the Biceps Brachii and Brachioradialis on Elbow Flexor Muscle Strength and Spasticity in Stroke Patients. Neural Plast 2022; 2022:1295908. [PMID: 35283993 PMCID: PMC8906960 DOI: 10.1155/2022/1295908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Muscle weakness and spasticity are common consequences of stroke, leading to a decrease in physical activity. The effective implementation of precision rehabilitation requires detailed rehabilitation evaluation. We aimed to analyze the surface electromyography (sEMG) signal features of elbow flexor muscle (biceps brachii and brachioradialis) spasticity in maximum voluntary isometric contraction (MVIC) and fast passive extension (FPE) in stroke patients and to explore the main muscle groups that affect the active movement and spasticity of the elbow flexor muscles to provide an objective reference for optimizing stroke rehabilitation. Methods Fifteen patients with elbow flexor spasticity after stroke were enrolled in this study. sEMG signals of the paretic and nonparetic elbow flexor muscles (biceps and brachioradialis) were detected during MVIC and FPE, and root mean square (RMS) values were calculated. The RMS values (mean and peak) of the biceps and brachioradialis were compared between the paretic and nonparetic sides. Additionally, the correlation between the manual muscle test (MMT) score and the RMS values (mean and peak) of the paretic elbow flexors during MVIC was analyzed, and the correlation between the modified Ashworth scale (MAS) score and the RMS values (mean and peak) of the paretic elbow flexors during FPE was analyzed. Results During MVIC exercise, the RMS values (mean and peak) of the biceps and brachioradialis on the paretic side were significantly lower than those on the nonparetic side (p < 0.01), and the RMS values (mean and peak) of the bilateral biceps were significantly higher than those of the brachioradialis (p < 0.01). The MMT score was positively correlated with the mean and peak RMS values of the paretic biceps and brachioradialis (r = 0.89, r = 0.91, r = 0.82, r = 0.85; p < 0.001). During FPE exercise, the RMS values (mean and peak) of the biceps and brachioradialis on the paretic side were significantly higher than those on the nonparetic side (p < 0.01), and the RMS values (mean and peak) of the brachioradialis on the paretic side were significantly higher than those of the biceps (p < 0.01). TheMAS score was positively correlated with the mean RMS of the paretic biceps and brachioradialis (r = 0.62, p = 0.021; r = 0.74, p = 0.004), and the MAS score was positively correlated with the peak RMS of the paretic brachioradialis (r = 0.59, p = 0.029) but had no significant correlation with the peak RMS of the paretic biceps (r = 0.49, p > 0.05). Conclusions The results confirm that the biceps is a vital muscle in active elbow flexion and that the brachioradialis plays an important role in elbow flexor spasticity, suggesting that the biceps should be the focus of muscle strength training of the elbow flexors and that the role of the brachioradialis should not be ignored in the treatment of elbow flexor spasticity. This study also confirmed the application value of sEMG in the objective assessment of individual muscle strength and spasticity in stroke patients.
Collapse
|
24
|
Chen YT, Liu Y, Zhang C, Magat E, Zhou P, Zhang Y, Li S. Comprehensive Assessment of the Time Course of Biomechanical, Electrophysiological and Neuro-Motor Effects after Botulinum Toxin Injections in Elbow Flexors of Chronic Stroke Survivors with Spastic Hemiplegia: A Cross Sectional Observation Study. Toxins (Basel) 2022; 14:toxins14020104. [PMID: 35202132 PMCID: PMC8875179 DOI: 10.3390/toxins14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is commonly used to manage focal spasticity in stroke survivors. This study aimed to a perform comprehensive assessment of the effects of BoNT injection. Twelve stroke subjects with spastic hemiplegia (age: 52.0 ± 10.1 year; 5 females) received 100 units of BoNT to the spastic biceps brachii muscles. Clinical, biomechanical, electrophysiological, and neuro-motor assessments were performed one week (wk) before (pre-injection), 3 weeks (wks) after, and 3 months (mons) after BoNT injection. BoNT injection significantly reduced spasticity, muscle strength, reflex torque, and compound muscle action potential (CMAP) amplitude of spastic elbow flexors (all p < 0.05) during the 3-wks visit, and these values return to the pre-injection level during the 3-mons visit. Furthermore, the degree of reflex torque change was negatively correlated to the amount of non-reflex component of elbow flexor resistance torque. However, voluntary force control and non-reflex resistance torque remained unchanged throughout. Our results revealed parallel changes in clinical, neurophysiological and biomechanical assessment after BoNT injection; BoNT injection would be more effective if hypertonia was mainly mediated by underlying neural mechanisms. BoNT did not affect voluntary force control of spastic muscles.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Department of Health and Kinesiology, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Ping Zhou
- Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (Y.L.); (C.Z.); (Y.Z.)
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-T.C.); (E.M.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
25
|
Huang C, Chen M, Li X, Zhang Y, Li S, Zhou P. Neurophysiological Factors Affecting Muscle Innervation Zone Estimation Using Surface EMG: A Simulation Study. BIOSENSORS-BASEL 2021; 11:bios11100356. [PMID: 34677312 PMCID: PMC8534086 DOI: 10.3390/bios11100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) recorded by a linear or 2-dimensional electrode array can be used to estimate the location of muscle innervation zones (IZ). There are various neurophysiological factors that may influence surface EMG and thus potentially compromise muscle IZ estimation. The objective of this study was to evaluate how surface-EMG-based IZ estimation might be affected by different factors, including varying degrees of motor unit (MU) synchronization in the case of single or double IZs. The study was performed by implementing a model simulating surface EMG activity. Three different MU synchronization conditions were simulated, namely no synchronization, medium level synchronization, and complete synchronization analog to M wave. Surface EMG signals recorded by a 2-dimensional electrode array were simulated from a muscle with single and double IZs, respectively. For each situation, the IZ was estimated from surface EMG and compared with the one used in the model for performance evaluation. For the muscle with only one IZ, the estimated IZ location from surface EMG was consistent with the one used in the model for all the three MU synchronization conditions. For the muscle with double IZs, at least one IZ was appropriately estimated from interference surface EMG when there was no MU synchronization. However, the estimated IZ was different from either of the two IZ locations used in the model for the other two MU synchronization conditions. For muscles with a single IZ, MU synchronization has little effect on IZ estimation from electrode array surface EMG. However, caution is required for multiple IZ muscles since MU synchronization might lead to false IZ estimation.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510970, China;
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Xiaoyan Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
- Correspondence:
| |
Collapse
|
26
|
Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabil Neural Repair 2021; 35:601-610. [PMID: 33978513 DOI: 10.1177/15459683211011214] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship of poststroke spasticity and motor recovery can be confusing. "True" motor recovery refers to return of motor behaviors to prestroke state with the same end-effectors and temporo-spatial pattern. This requires neural recovery and repair, and presumably occurs mainly in the acute and subacute stages. However, according to the International Classification of Functioning, Disability and Health, motor recovery after stroke is also defined as "improvement in performance of functional tasks," i.e., functional recovery, which is mainly mediated by compensatory mechanisms. Therefore, stroke survivors can execute motor tasks in spite of disordered motor control and the presence of spasticity. Spasticity interferes with execution of normal motor behaviors ("true" motor recovery), throughout the evolution of stroke from acute to chronic stages. Spasticity reduction does not affect functional recovery in the acute and subacute stages; however, appropriate management of spasticity could lead to improvement of motor function, that is, functional recovery, during the chronic stage of stroke. We assert that spasticity results from upregulation of medial cortico-reticulo-spinal pathways that are disinhibited due to damage of the motor cortex or corticobulbar pathways. Spasticity emerges as a manifestation of maladaptive plasticity in the early stages of recovery and can persist into the chronic stage. It coexists and shares similar pathophysiological processes with related motor impairments, such as abnormal force control, muscle coactivation and motor synergies, and diffuse interlimb muscle activation. Accordingly, we propose a new definition of spasticity to better account for its pathophysiology and the complex nuances of different definitions of motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA
| | - Gerard E Francisco
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA.,World Federation of NeuroRehabilitation, North Shields, UK
| | | |
Collapse
|