1
|
Xu L, Henriksen C, Mebus V, Guérillot R, Petersen A, Jacques N, Jiang JH, Derks RJE, Sánchez-López E, Giera M, Leeten K, Stinear TP, Oury C, Howden BP, Peleg AY, Frees D. A Clinically Selected Staphylococcus aureus clpP Mutant Survives Daptomycin Treatment by Reducing Binding of the Antibiotic and Adapting a Rod-Shaped Morphology. Antimicrob Agents Chemother 2023; 67:e0032823. [PMID: 37184389 PMCID: PMC10269151 DOI: 10.1128/aac.00328-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and β-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor Mebus
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Jhih-Hang Jiang
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rico J. E. Derks
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Elena Sánchez-López
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, Netherlands
| | - Kirsten Leeten
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Sequence Type 5 (ST5) as a Possible Predictor of Bacterial Persistence in Adult Patients with Methicillin-Resistant Staphylococcus aureus Pneumonia Treated with Vancomycin. Microbiol Spectr 2022; 10:e0134822. [PMID: 36094217 PMCID: PMC9603198 DOI: 10.1128/spectrum.01348-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vancomycin remains the mainstay of treatment for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. This study assessed risk factors for vancomycin failure in 63 patients with MRSA pneumonia through detailed clinical, microbiological, pharmacokinetic/pharmacodynamic, and genetic analyses of prospective multicenter studies conducted from February 2012 to July 2018. Therapeutic drug monitoring was performed during vancomycin treatment, and the 24-h area under the curve (AUC0-24) was calculated. All baseline strains were collected for MIC determination, heterogeneous vancomycin-intermediate S. aureus (hVISA) screening, and biofilm determination. Whole-genome sequencing was performed on the isolates to analyze their molecular typing and virulence and adhesion genes. Clinical signs and symptoms improved in 44 patients (44/63, 69.8%), with vancomycin daily dose (P = 0.045), peak concentration (P = 0.020), and sdrC (P = 0.047) being significant factors. Isolates were eradicated in 51 patients (51/63, 81.0%), with vancomycin daily dose (P = 0.009), cardiovascular disease (P = 0.043), sequence type 5 (ST5; P = 0.017), tst (P = 0.050), and sec gene (P = 0.044) associated with bacteriological failure. Although the AUC0-24/MIC was higher in the groups with bacterial eradication, the difference was not statistically significant (P = 0.108). Multivariate analysis showed that no variables were associated with clinical efficacy; ST5 was a risk factor for bacterial persistence (adjusted odds ratio, 4.449; 95% confidence interval, 1.103 to 17.943; P = 0.036). ST5 strains had higher frequencies of the hVISA phenotype, biofilm expression, and presence of some adhesion and virulence genes such as fnbB, tst, and sec than non-ST5 strains. Our study suggests that ST5 is a possible predictor of bacterial persistence in MRSA pneumonia treated with vancomycin. IMPORTANCE Few studies have simultaneously examined the influence of clinical characteristics of patients with pneumonia, the vancomycin pharmacokinetic/pharmacodynamic (PK/PD) index, and the phenotypic and genetic characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains. We assessed risk factors for vancomycin failure in patients with MRSA pneumonia by analyzing these influences in a prospective multicenter study. Sequence type 5 (ST5) was a possible predictor of bacterial persistence in adult patients with MRSA pneumonia (adjusted odds ratio, 4.449). We found that this may be related to ST5 strains having higher levels of vancomycin heterogeneous resistance, biofilms, and the presence of adhesion and virulence genes such as fnbB, tst, and sec.
Collapse
|
4
|
Wang B, Song CR, Zhang QY, Wei PW, Wang X, Long YH, Yang YX, Liao SG, Liu HM, Xu GB. The Fusaric Acid Derivative qy17 Inhibits Staphylococcus haemolyticus by Disrupting Biofilm Formation and the Stress Response via Altered Gene Expression. Front Microbiol 2022; 13:822148. [PMID: 35369527 PMCID: PMC8964301 DOI: 10.3389/fmicb.2022.822148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is the second most commonly isolated coagulase-negative staphylococcus (CoNS) in patients with hospital-acquired infections. It can produce phenol-soluble modulin (PSM) toxins and form biofilms. Compared with the wealth of information on Staphylococcus aureus and Staphylococcus epidermidis, very little is known about S. haemolyticus. There is an urgent need to find an effective preparation to combat the harm caused by S. haemolyticus infection. Chinese herbs have been utilized to cure inflammation and infectious diseases and have a long history of anticancer function in China. Here, we modified fusaric acid characterized from the metabolites of Gibberella intermedia, an endophyte previously isolated from Polygonum capitatum. This study shows that fusaric acid analogs (qy17 and qy20) have strong antibacterial activity against S. haemolyticus. In addition, crystal violet analyses and scanning electron microscopy observations demonstrated that qy17 inhibited biofilm formation and disrupted mature biofilms of S. haemolyticus in a dose-dependent manner. Additionally, it reduced the number of live bacteria inside the biofilm. Furthermore, the antibiofilm function of qy17 was achieved by downregulating transcription factors (sigB), transpeptidase genes (srtA), and bacterial surface proteins (ebp, fbp) and upregulating biofilm-related genes and the density-sensing system (agrB). To further elucidate the bacteriostatic mechanism, transcriptomic analysis was carried out. The following antibacterial mechanisms were uncovered: (i) the inhibition of heat shock (clpB, groES, groL, grpE, dnaK, dnaJ)-, oxidative stress (aphC)- and biotin response (bioB)-related gene expression, which resulted in S. haemolyticus being unable to compensate for various stress conditions, thereby affecting bacterial growth; and (ii) a reduction in the expression of PSM-beta (PSMβ1, PSMβ2, PSMβ3) toxin- and Clp protease (clpP, clpX)-related genes. These findings could have major implications for the treatment of diseases caused by S. haemolyticus infections. Our research reveals for the first time that fusaric acid derivatives inhibit the expression of biofilm formation-related effector and virulence genes of S. haemolyticus. These findings provide new potential drug candidates for hospital-acquired infections caused by S. haemolyticus.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Qing-Yan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Ju Y, An Q, Zhang Y, Sun K, Bai L, Luo Y. Recent advances in Clp protease modulation to address virulence, resistance and persistence of MRSA infection. Drug Discov Today 2021; 26:2190-2197. [PMID: 34048895 DOI: 10.1016/j.drudis.2021.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Clp protease is an AAA+ protease that executes abnormally folded or malfunctioning proteins, and has an important role in producing virulence factors, forming biofilms or persisters and developing methicillin-resistant Staphylococcus aureus (MRSA). Recent studies showed that Clp protease controls virulence via agr signaling and degrades antitoxins of the toxin-antitoxin system to modulate the formation of persisters and biofilms. In this review, we focus on recent developments concerning the virulence and persistence regulatory pathways and resistance-related mechanism of Clp protease in S. aureus, with an overview of the Clp modulators developed to treat MRSA infection.
Collapse
Affiliation(s)
- Yuan Ju
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Sichuan University Library, Sichuan University, Chengdu 610041, China
| | - Qi An
- Public Health Clinical Center of Chengdu, Chengdu 610041, China
| | - Yiwen Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ke Sun
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Löffler B, Tuchscherr L. Staphylococcus aureus Toxins: Promoter or Handicap during Infection? Toxins (Basel) 2021; 13:287. [PMID: 33921743 PMCID: PMC8072895 DOI: 10.3390/toxins13040287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an opportunistic and versatile pathogen that can cause several diseases, which range from acute and destructive, to chronic and difficult-to-treat infections [...].
Collapse
Affiliation(s)
- Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | | |
Collapse
|