1
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
2
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
3
|
Majer-Baranyi K, Szendrei F, Adányi N, Székács A. Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate. BIOSENSORS 2023; 13:771. [PMID: 37622857 PMCID: PMC10452378 DOI: 10.3390/bios13080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The herbicide active ingredient glyphosate is the most widely applied herbicidal substance worldwide. Currently it is the market-leading pesticide, and its use is projected to further grow 4.5-fold between 2022 and 2029. Today, glyphosate use exceeds one megaton per year worldwide, which represents a serious environmental burden. A factor in the overall boost in the global use of glyphosate has been the spread of glyphosate-tolerant genetically modified (GM) crops that allow post-emergence applications of the herbicide on these transgenic crops. In turn, cultivation of glyphosate-tolerant GM crops represented 56% of the glyphosate use in 2019. Due to its extremely high application rate, xenobiotic behaviour and a water solubility (11.6 mg/mL at 25 °C) unusually high among pesticide active ingredients, glyphosate has become a ubiquitous water pollutant and a primary drinking water contaminant worldwide, presenting a threat to water quality. The goal of our research was to develop a rapid and sensitive method for detecting this herbicide active ingredient. For this purpose, we applied the novel analytical biosensor technique optical waveguide light-mode spectroscopy (OWLS) to the label-free detection of glyphosate in a competitive immunoassay format using glyphosate-specific polyclonal antibodies. After immobilising the antigen conjugate in the form of a glyphosate conjugated to human serum albumin for indirect measurement, the sensor chip was used in a flow-injection analyser system. For the measurements, an antibody stock solution was diluted to 2.5 µg/mL. During the measurement, standard solutions were mixed with the appropriate concentration of antibodies and incubated for 1 min before injection. The linear detection range and the EC50 value of the competitive detection method were between 0.01 and 100 ng/mL and 0.60 ng/mL, respectively. After investigating the indirect method, we tested the cross-reactivity of the antibody with glyphosate and structurally related compounds.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Fanni Szendrei
- Institute of Isotopes Co., Ltd., Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
4
|
Development of an Immunofluorescent Capillary Sensor for the Detection of Zearalenone Mycotoxin. Toxins (Basel) 2022; 14:toxins14120866. [PMID: 36548763 PMCID: PMC9785567 DOI: 10.3390/toxins14120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A capillary-based immunofluorescence sensor was developed and incorporated in a flow injection analysis system. The light-guiding capillary was illuminated axially by a 473 nm/5 mW solid state laser through a tailored optofluidic connector. High sensitivity of the system was achieved by efficiently collecting and detecting the non-guided fluorescence signal scattered out along the wall of the capillary. The excitation was highly suppressed with bandpass and dichroic filters by simultaneously exploiting the guiding effect inside the capillary. The glass capillary used as a measuring cell was silanized in liquid phase by 3-aminopropyltriethoxysilane (APTS), and the biomolecules were immobilized using glutaraldehyde inside the capillary. The applicability of the developed system was tested with a bovine serum albumin (BSA)-anti-BSA-IgG model-molecule pair, using a fluorescently labeled secondary antibody. Based on the results of the BSA-anti-BSA experiments, a similar setup using a primary antibody specific for zearalenone (ZON) was established, and a competitive fluorescence measurement system was developed for quantitative determination of ZON. For the measurements, 20 µg/mL ZON-BSA conjugate was immobilized in the capillary, and a 1:2500 dilution of the primary antibody stock solution and a 2 µg/mL secondary antibody solution were set. The developed capillary-based immunosensor allowed a limit of detection (LOD) of 0.003 ng/mL and a limit of quantification (LOQ) of 0.007 ng/mL for ZON in the competitive immunosensor setup, with a dynamic detection range of 0.01-10 ng/mL ZON concentrations.
Collapse
|
5
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
6
|
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021; 13:toxins13070499. [PMID: 34357971 PMCID: PMC8310349 DOI: 10.3390/toxins13070499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
Collapse
|
7
|
Mycotoxins as Emerging Contaminants. Introduction to the Special Issue "Rapid Detection of Mycotoxin Contamination". Toxins (Basel) 2021; 13:toxins13070475. [PMID: 34357947 PMCID: PMC8310339 DOI: 10.3390/toxins13070475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
|
8
|
Gémes B, Takács E, Gádoros P, Barócsi A, Kocsányi L, Lenk S, Csákányi A, Kautny S, Domján L, Szarvas G, Adányi N, Nabok A, Mörtl M, Székács A. Development of an Immunofluorescence Assay Module for Determination of the Mycotoxin Zearalenone in Water. Toxins (Basel) 2021; 13:182. [PMID: 33801263 PMCID: PMC8000975 DOI: 10.3390/toxins13030182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/12/2023] Open
Abstract
Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.
Collapse
Affiliation(s)
- Borbála Gémes
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Patrik Gádoros
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - László Kocsányi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Csákányi
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Szabolcs Kautny
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - László Domján
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Gábor Szarvas
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Nóra Adányi
- Food Science Research Centre, Institute of Food Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary;
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| |
Collapse
|
9
|
Nabok A, Al-Jawdah AM, Gémes B, Takács E, Székács A. An Optical Planar Waveguide-Based Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins (Basel) 2021; 13:toxins13020089. [PMID: 33504112 PMCID: PMC7911535 DOI: 10.3390/toxins13020089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
A planar waveguide (PW) immunosensor working as a polarisation interferometer was developed for the detection of mycotoxin zearalenone (ZON). The main element of the sensor is an optical waveguide consisting of a thin silicon nitride layer between two thicker silicon dioxide layers. A combination of a narrow waveguiding core made by photolithography with an advanced optical set-up providing a coupling of circular polarised light into the PW via its slanted edge allowed the realization of a novel sensing principle by detection of the phase shift between the p- and s-components of polarised light propagating through the PW. As the p-component is sensitive to refractive index changes at the waveguide interface, molecular events between the sensor surface and the contacting sample solution can be detected. To detect ZON concentrations in the sample solution, ZON-specific antibodies were immobilised on the waveguide via an electrostatically deposited polyelectrolyte layer, and protein A was adsorbed on it. Refractive index changes on the surface due to the binding of ZON molecules to the anchored antibodies were detected in a concentration-dependent manner up to 1000 ng/mL of ZON, allowing a limit of detection of 0.01 ng/mL. Structurally unrelated mycotoxins such as aflatoxin B1 or ochratoxin A did not exert observable cross-reactivity.
Collapse
Affiliation(s)
- Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
- Correspondence: ; Tel.: +44-7854-805603
| | - Ali Madlool Al-Jawdah
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
- College of Sciences, Babylon University, P.O. Box 4, Hilla 51002, Iraq
| | - Borbála Gémes
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary; (A.S.); (B.G.); (E.T.)
| | - Eszter Takács
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary; (A.S.); (B.G.); (E.T.)
| | - András Székács
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary; (A.S.); (B.G.); (E.T.)
| |
Collapse
|