1
|
Yang S, Wang X, Zheng F, Pei L, Liu J, Di B, Shi Y. Toxicokinetics of α- and β-amanitin in mice following single and combined administrations: Simulating in vivo amatoxins processes in clinical cases. Toxicon 2024; 247:107839. [PMID: 38971475 DOI: 10.1016/j.toxicon.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
α-Amanitin and β-amanitin, two of the most toxic amatoxin compounds, typically coexist in the majority of Amanita mushrooms. The aim of this study was to use a newly developed ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method to determine the toxicokinetics and tissue distribution of α- and β-amanitin following single or combined oral (po) administration in mice. α-Amanitin and β-amanitin administered at 2 or 10 mg/kg doses showed similar toxicokinetic profiles, except for peak concentration (Cmax). The elimination half-life (t1/2) values of α-amanitin and β-amanitin in mice were 2.4-2.8 h and 2.5-2.7 h, respectively. Both α- and β-amanitin were rapidly absorbed into the body, with times to reach peak concentration (Tmax) between 1.0 and 1.5 h. Following single oral administration at 10 mg/kg, the Cmax was significantly lower for α-amanitin (91.1 μg/L) than for β-amanitin (143.1 μg/L) (p < 0.05). The toxicokinetic parameters of α-amanitin, such as t1/2, mean residence time (MRT), and volume of distribution (Vz/F) and of β-amanitin, such as Vz/F, were significantly different (p < 0.05) when combined administration was compared to single administration. Tissues collected at 24 h after po administration revealed decreasing tissue distributions for α- and β-amanitin of intestine > stomach > kidney > lung > spleen > liver > heart. The substantial distribution of toxins in the kidney corresponds to the known target organs of amatoxin poisoning. The content in the stomach, liver, and kidney was significantly higher for of β-amanitin than for α-amanitin at 24 h following oral administration of a 10 mg/kg dose. No significant difference was detected in the tissue distribution of either amatoxin following single or combined administration. After po administration, both amatoxins were primarily excreted through the feces. Our data suggest the possibility of differences in the toxicokinetics in patients poisoned by mushrooms containing both α- and β-amanitin than containing a single amatoxin. Continuous monitoring of toxin concentrations in patients' blood and urine samples is necessary in clinical practice.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Xin Wang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Fenshuang Zheng
- Affiliated Hospital of Yunnan University (Yunnan Second People's Hospital, Yunnan Eye Hospital), Kunming, 650021, PR China
| | - Lina Pei
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Jinting Liu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China.
| |
Collapse
|
2
|
Shi H, Wu Y, Wang L, Zhou X, Li F. Effects of Laughter Therapy on Improving Negative Emotions Associated with Cancer: A Systematic Review and Meta-Analysis. Oncology 2023; 102:343-353. [PMID: 37906984 PMCID: PMC10994600 DOI: 10.1159/000533690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION With aging and growth of the population, the risk of cancer incidence and mortality is rapidly increasing. However, psychosocial treatment has been seriously neglected in many healthcare settings. Laughter therapy is a therapeutic program to improve emotional wellbeing and health which has been applied as a complementary treatment. We aim to explore effects of laughter therapy for patients with cancer on their negative emotions such as depression, anxiety, stress, pain, and fatigue. METHODS We searched the Cochrane Library, Embase, PubMed, Scopus, Web of Science, WANFANG data, Weipu (VIP), Chinese National Knowledge Infrastructure (CNKI) and independently rated the risk of bias in every article using the Cochrane Collaboration's Risk of Bias Assessment Tool. Review Manager and STATA software were used to pool the individually included studies. RESULTS Seven studies were found eligible to be included in the present review. Overall, study quality was relatively high. Our findings suggest that laughter therapy might have a positive effect on improving emotional response in cancer patients. Arguably, laughter therapy, whether humor or laughter, has a positive effect on anxiety, stress, pain feeling, fatigue, and depression in cancer patients. CONCLUSIONS Laughter therapy is a convenient, multi-modality, flexible-duration therapy to improve negative emotions in cancer patients, regardless of their gender, age, and type of cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Nursing School, Changchun University of Chinese Medicine, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Yuejin Wu
- School of Nursing, Jilin University, Changchun, China
| | - Lu Wang
- School of Nursing, Jilin University, Changchun, China
| | - Xiuling Zhou
- Nursing School, Changchun University of Chinese Medicine, Changchun, China
| | - Feng Li
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
3
|
Liu Y, Li S, Feng Y, Zhang Y, Ouyang J, Li S, Wang J, Tan L, Zou L. Serum metabolomic analyses reveal the potential metabolic biomarkers for prediction of amatoxin poisoning. Toxicon 2023; 230:107153. [PMID: 37178797 DOI: 10.1016/j.toxicon.2023.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Amatoxin poisoning leads to over 90% of deaths in mushroom poisoning. The objective of present study was to identify the potential metabolic biomarkers for early diagnosis of amatoxin poisoning. Serum samples were collected from 61 patients with amatoxin poisoning and 61 healthy controls. An untargeted metabolomics analysis was performed using the ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS). Multivariate statistical analysis revealed that the patients with amatoxin poisoning could be clearly separated from healthy controls on the basis of their metabolic fingerprints. There were 33 differential metabolites including 15 metabolites up-regulated metabolites and 18 down-regulated metabolites in patients with amatoxin poisoning compared to healthy controls. These metabolites mainly enriched in the lipid metabolism and amino acid metabolism pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism, Phenylalanine tyrosine and typtophan biosynthesis, Tyrosine metabolism, Arginine and proline metabolism, which may serve important roles in the amatoxin poisoning. Among the differential metabolites, a total of 8 significant metabolic markers were identified for discriminating patients with amatoxin poisoning from healthy controls, including Glycochenodeoxycholate-3-sulfate (GCDCA-S), 11-Oxo-androsterone glucuronide, Neomenthol-glucuronide, Dehydroisoandrosterone 3-glucuronide, Glucose 6-phosphate (G6P), Lanthionine ketimine, Glycerophosphocholine (GPC) and Nicotinamide ribotide, which achieved satisfactory diagnostic accuracy (AUC>0.8) in both discovery and validation cohorts. Strikingly, the Pearson's correlation analysis indicated that 11-Oxo-androsterone glucuronide, G6P and GCDCA-S were positively correlated with the liver injury induced by amatoxin poisoning. The findings of the current study may provide insight into the pathological mechanism of amatoxin poisoning and screened out the reliable metabolic biomarkers to contribute the clinical early diagnosis of amatoxin poisoning.
Collapse
Affiliation(s)
- Yarong Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410013, PR China; Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China
| | - Shumei Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410013, PR China; Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410013, PR China; Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China
| | - Yiyuan Zhang
- Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410013, PR China; Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China
| | - Shutong Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410013, PR China; Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China
| | - Jia Wang
- Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China.
| | - Lihong Tan
- Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China.
| | - Lianhong Zou
- Institute of Clinical Translational Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, No. 371 Tongzipo Road, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
4
|
Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. Int J Mol Sci 2022; 23:ijms232012294. [PMID: 36293151 PMCID: PMC9603094 DOI: 10.3390/ijms232012294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) exposure arises from RNA polymerase II (RNAP II) inhibition. RNAP Ⅱ inhibition occurs through the dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling pathway was activated through quantitative phosphoproteomic and molecular biological analyses in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phosphorylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors. Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant splicing events leading to cell death in Huh-7 cells.
Collapse
|
5
|
Toxicokinetics of β-Amanitin in Mice and In Vitro Drug-Drug Interaction Potential. Pharmaceutics 2022; 14:pharmaceutics14040774. [PMID: 35456608 PMCID: PMC9030691 DOI: 10.3390/pharmaceutics14040774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
The toxicokinetics of β-amanitin, a toxic bicyclic octapeptide present abundantly in Amanitaceae mushrooms, was evaluated in mice after intravenous (iv) and oral administration. The area under plasma concentration curves (AUC) following iv injection increased in proportion to doses of 0.2, 0.4, and 0.8 mg/kg. β-amanitin disappeared rapidly from plasma with a half-life of 18.3−33.6 min, and 52.3% of the iv dose was recovered as a parent form. After oral administration, the AUC again increased in proportion with doses of 2, 5, and 10 mg/kg. Absolute bioavailability was 7.3−9.4%, which resulted in 72.4% of fecal recovery from orally administered β-amanitin. Tissue-to-plasma AUC ratios of orally administered β-amanitin were the highest in the intestine and stomach. It also readily distributed to kidney > spleen > lung > liver ≈ heart. Distribution to intestines, kidneys, and the liver is in agreement with previously reported target organs after acute amatoxin poisoning. In addition, β-amanitin weakly or negligibly inhibited major cytochrome P450 and 5′-diphospho-glucuronosyltransferase activities in human liver microsomes and suppressed drug transport functions in mammalian cells that overexpress transporters, suggesting the remote drug interaction potentials caused by β-amanitin exposure.
Collapse
|
6
|
Park R, Choi WG, Lee MS, Cho YY, Lee JY, Kang HC, Sohn CH, Song IS, Lee HS. Pharmacokinetics of α-amanitin in mice using liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:821-835. [PMID: 34187333 DOI: 10.1080/15287394.2021.1944942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.
Collapse
Affiliation(s)
- Ria Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Won-Gu Choi
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chang Hwan Sohn
- Department of Emergency Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Im-Sook Song
- Kyungpook National University, Daegu, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|