1
|
Gu J, Ip JCH, Chan SSW, Li J, Lam VTT, Leung KMY, Lam PKS, Leung PTY, Yan M. Effects of temperature on physiology, transcription, and toxin production of the harmful benthic dinoflagellate Gambierdiscus belizeanus. MARINE POLLUTION BULLETIN 2024; 211:117377. [PMID: 39644624 DOI: 10.1016/j.marpolbul.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Benthic dinoflagellates constitute a group of microalgae that inhabit the ocean floor, adhering to substrates such as coral, seagrasses, and sand. Certain species within this group have the potential to produce toxins. Ocean warming could increase the occurrence of harmful benthic dinoflagellate blooms, which pose a significant threat to coastal ecosystems in tropical and subtropical regions. However, the impact of water temperatures on the growth and toxicity of these harmful algal species remains uncertain. In this study, we investigated the physiological and transcriptional responses, as well as toxin production, of Gambierdiscus belizeanus, a common dinoflagellate responsible for increasing ciguatera risk, when exposed to temperatures ranging from 18 °C to 28 °C. Based on 70-day growth curves, G. belizeanus grew fastest at 26 °C, with a maximum specific growth rate of 0.088 ± 0.018 div·d-1. At stationary phase of algal cultures, the photosynthetic efficiency (Fv/Fm) of algal cells at 26 °C was the highest (0.56 ± 0.02) among all treatments; significant decreases in pigment contents, including chlorophyll a, chlorophyll c, and carotenoids, were observed in algal cells exposed to 18 °C. However, during the exponential phase, only algal cultures exposed to 22 °C exhibited significantly lower levels of chlorophyll a and photosynthetic efficiency. The levels of algal toxins (44-methylgambierone and gambierone) in the 18 °C and 22 °C groups were significantly higher than those in groups exposed to higher temperatures (26 °C and 28 °C). Transcriptomic analysis showed that improved growth and photosynthesis at higher temperatures (26 °C and 28 °C) corresponded with the increased activity of crucial genes in carbon metabolism and photosynthesis. These genes, essential for energy and growth, could potentially facilitate the spread of G. belizeanus blooms. Lower temperatures led to molecular adaptations in G. belizeanus, such as modulated cell cycle genes and suppressed photosynthesis, explaining the physiological changes observed. Furthermore, the activation of toxin production-related genes under lower temperatures suggests a potential risk to ecosystems due to bioaccumulation of toxins. This study elucidates the distinct cellular and molecular responses of harmful dinoflagellates to variations in seawater temperature. These findings enhance our understanding of the emerging threats that toxin-producing benthic dinoflagellates pose to coastal ecosystems. This concern is especially significant as ocean warming has enabled some benthic toxic dinoflagellates to extend their range into higher-latitude regions.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, 999077, Hong Kong, China
| | - Sharon S W Chan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, 999077, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Meng Yan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Richlen ML, Horn K, Uva V, Fachon E, Heidmann SL, Smith TB, Parsons ML, Anderson DM. Gambierdiscus species diversity and community structure in St. Thomas, USVI and the Florida Keys, USA. HARMFUL ALGAE 2024; 131:102562. [PMID: 38212087 PMCID: PMC11137678 DOI: 10.1016/j.hal.2023.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.
Collapse
Affiliation(s)
- Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Kali Horn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Victoria Uva
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Evangeline Fachon
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Boston, MA, 02139, USA
| | - Sarah L Heidmann
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, U.S. Virgin Islands 00802, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, U.S. Virgin Islands 00802, USA
| | - Michael L Parsons
- The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Parsons ML, Richlen ML, Smith TB, Anderson DM, Abram AL, Erdner DL, Robertson A. CiguaMOD I: A conceptual model of ciguatoxin loading in the Greater Caribbean Region. HARMFUL ALGAE 2024; 131:102561. [PMID: 38212086 PMCID: PMC10784636 DOI: 10.1016/j.hal.2023.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an "early warning" system to develop strategic responses to potential CP flare ups in the future.
Collapse
Affiliation(s)
- Michael L Parsons
- The Water School, Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Mindy L Richlen
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands 00802, USA
| | - Donald M Anderson
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Ashley L Abram
- The Water School, Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA
| | - Deana L Erdner
- University of Texas Marine Science Institute, Port Aransas, TX 78373, USA
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL 36688, USA; Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| |
Collapse
|
4
|
Leynse AK, Mudge EM, Turner AD, Maskrey BH, Robertson A. Gambierone and Sodium Channel Specific Bioactivity Are Associated with the Extracellular Metabolite Pool of the Marine Dinoflagellate Coolia palmyrensis. Mar Drugs 2023; 21:md21040244. [PMID: 37103383 PMCID: PMC10143066 DOI: 10.3390/md21040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways.
Collapse
Affiliation(s)
- Alexander K Leynse
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL 36688, USA
- Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA
| | - Elizabeth M Mudge
- National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3M3Z1, Canada
| | - Andrew D Turner
- Center for the Environment, Fisheries, and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Benjamin H Maskrey
- Center for the Environment, Fisheries, and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Alison Robertson
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL 36688, USA
- Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA
| |
Collapse
|
5
|
Mudge EM, Miles CO, Ivanova L, Uhlig S, James KS, Erdner DL, Fæste CK, McCarron P, Robertson A. Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean. CHEMOSPHERE 2023; 330:138659. [PMID: 37044143 DOI: 10.1016/j.chemosphere.2023.138659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Lada Ivanova
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Silvio Uhlig
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Keiana S James
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA
| | - Deana L Erdner
- Marine Science Institute, University of Texas at Austin, 750 Channel View Dr, Port Aransas, TX, 78373, USA
| | - Christiane K Fæste
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Alison Robertson
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA.
| |
Collapse
|
6
|
Tartaglione L, Loeffler CR, Miele V, Varriale F, Varra M, Monti M, Varone A, Bodi D, Spielmeyer A, Capellacci S, Penna A, Dell'Aversano C. Dereplication of Gambierdiscusbalechii extract by LC-HRMS and in vitro assay: First description of a putative ciguatoxin and confirmation of 44-methylgambierone. CHEMOSPHERE 2023; 319:137940. [PMID: 36702405 DOI: 10.1016/j.chemosphere.2023.137940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.
Collapse
Affiliation(s)
- Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Christopher R Loeffler
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy; German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Valentina Miele
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Fabio Varriale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Michela Varra
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Marcello Monti
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Alessia Varone
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Astrid Spielmeyer
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Samuela Capellacci
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
7
|
Holmes MJ, Lewis RJ. Model of the Origin of a Ciguatoxic Grouper ( Plectropomus leopardus). Toxins (Basel) 2023; 15:toxins15030230. [PMID: 36977121 PMCID: PMC10055633 DOI: 10.3390/toxins15030230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.
Collapse
Affiliation(s)
- Michael J Holmes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
8
|
Tester PA, Litaker RW, Soler-Onís E, Fernández-Zabala J, Berdalet E. Using artificial substrates to quantify Gambierdiscus and other toxic benthic dinoflagellates for monitoring purposes. HARMFUL ALGAE 2022; 120:102351. [PMID: 36470606 DOI: 10.1016/j.hal.2022.102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Collecting methods generally used to determine cell abundances of toxic benthic dinoflagellates (BHAB) use cells dislodged from either macrophytes or artificial substrates. This article compares the advantages of the macrophyte and artificial substrate methods and discusses which method is more appropriate for use in monitoring programs that focus on toxic BHAB species identification and quantification. The concept of benthic dinoflagellate "preference" for specific macrophytes was also reviewed. Examination of data from 75 field studies showed macrophytes with higher surface area per unit biomass harbored higher concentrations of Gambierdiscus cells. There was no definitive evidence that cells were actively selecting one macrophyte over another. This observation supports the use of artificial substrates (AS) as a means of assessing cell abundances in complex habitats because cell counts are normalized to a standardized surface area, not macrophyte biomass. The artificial substrate method represents the most robust approach, currently available, for collecting toxic, benthic dinoflagellates for a cell-based early warning system.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- CSS Inc., Under Contract to National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Rd., Beaufort, NC, 28516, USA
| | - Emilio Soler-Onís
- Observatorio Canario de Algas Nocivas (OCHAB), FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, C/ Miramar, 121. 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Islands, Spain
| | - Juan Fernández-Zabala
- Observatorio Canario de Algas Nocivas (OCHAB), FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, C/ Miramar, 121. 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Islands, Spain
| | - Elisa Berdalet
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Stuart J, Smith KF, Rhodes L, Murray JS, Viallon J, Henry K, Darius HT, Murray SA, De Azevedo CD, Argyle P, Chinain M. Geographical distribution, molecular and toxin diversity of the dinoflagellate species Gambierdiscus honu in the Pacific region. HARMFUL ALGAE 2022; 118:102308. [PMID: 36195424 DOI: 10.1016/j.hal.2022.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/29/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
An increase in cases of ciguatera poisoning (CP) and expansion of the causative species in the South Pacific region highlight the need for baseline data on toxic microalgal species to help identify new areas of risk and manage known hot spots. Gambierdiscus honu is a toxin producing and potential CP causing dinoflagellate species, first described in 2017. Currently no high-resolution geographical distribution, intraspecific genetic variation or toxin production diversity data is available for G. honu. This research aimed to further characterize G. honu by investigating its distribution using species-specific real-time polymerase chain reaction assays at 25 sites in an area spanning ∼8000 km of the Coral Sea/Pacific Ocean, and assessing intraspecific genetic variation, toxicity and toxin production of isolated strains. Assessment of genetic variation of the partial rRNA operon of isolates demonstrated no significant intraspecific population structure, in addition to a lack of adherence to isolation by distance (IBD) model of evolution. The detected distribution of G. honu in the Pacific region was within the expected tropical to temperate latitudinal ranges of 10° to -30° and extended from Australia to French Polynesia. In the lipophilic fractions, the neuroblastoma cell-based assay (CBA-N2a) showed no ciguatoxin (CTX)-like activity for nine of the 10 isolates, and an atypical pattern for CAWD233 isolate which showed cytotoxic activity in OV- and OV+ conditions. In the same way, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed no Pacific-CTXs (CTX-3B, CTX-3C, CTX-4A, CTX-4B) were produced by the ten strains. The CBA-N2a assessment of the hydrophilic fractions showed moderate to high cytotoxicity in both OV- and OV+ condition for all the strains showing a cytotoxic profile similar to that of gambierone. Indeed, this study is the first to show the cytotoxic activity of gambierone on mouse neuroblastoma cells while no cytotoxicity was observed when 44-MG was analysed at the same concentrations using the CBA-N2a. Analysis of the hydrophilic via LC-MS/MS confirmed production of gambierone in all isolates, ranging from 2.1 to 38.1 pg/cell, with 44-methylgambierone (44-MG) also produced by eight of the isolates, ranging from 0.3 to 42.9 pg/cell. No maitotoxin-1 was detected in any of the isolates. Classification of the G. honu strains according to the quantities of gambierone produced aligned with the classification of their cytotoxicity using the CBA-N2a. Finally, no maitotoxin-1 (MTX) was detected in any of the isolates. This study shows G. honu is widely distributed within the Pacific region with no significant intraspecific population structure present. This aligns with the view of microalgal populations as global metapopulations, however more in-depth assessment with other genetic markers could detect further structure. Toxicity diversity across 10 isolates assessed did not display any geographical patterns.
Collapse
Affiliation(s)
- Jacqui Stuart
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Lesley Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jérôme Viallon
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | - Kevin Henry
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | - H Taiana Darius
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| | | | | | - Phoebe Argyle
- University of Technology Sydney, New South Wales, Australia
| | - Mireille Chinain
- Institut Louis Malardé - UMR EIO, Laboratoire des Biotoxines Marines, Papeete, Tahiti, French Polynesia
| |
Collapse
|
10
|
Holmes MJ, Lewis RJ. Origin of Ciguateric Fish: Quantitative Modelling of the Flow of Ciguatoxin through a Marine Food Chain. Toxins (Basel) 2022; 14:toxins14080534. [PMID: 36006196 PMCID: PMC9414493 DOI: 10.3390/toxins14080534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
To begin to understand the impact of food chain dynamics on ciguatera risk, we used published data to model the transfer of ciguatoxins across four trophic levels of a marine food chain in Platypus Bay, Australia. The data to support this first attempt to conceptualize the scale of each trophic transfer step was limited, resulting in broad estimates. The hypothetical scenario we explored generated a low-toxicity 10 kg Spanish mackerel (Scomberomorus commerson) with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1, also known as CTX1B) from 19.5–78.1 µg of P-CTX-1 equivalents (eq.) that enter the marine food chain from a population of 12–49 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 × 10−12 g/cell of the P-CTX-1 precursor, P-CTX-4B. This number of Gambierdiscus could be epiphytic on 22–88 kg of the benthic macroalgae (Cladophora) that carpets the bottom of much of Platypus Bay, with the toxin transferred to an estimated 40,000–160,000 alpheid shrimps in the second trophic level. This large number of shrimps appears unrealistic, but toxic shrimps would likely be consumed by a school of small, blotched javelin fish (Pomadasys maculatus) at the third trophic level, reducing the number of shrimps consumed by each fish. The Spanish mackerel would accumulate a flesh concentration of 0.1 µg/kg P-CTX-1 eq. by preying upon the school of blotched javelin and consuming 3.6–14.4 µg of P-CTX-1 eq. However, published data indicate this burden of toxin could be accumulated by a 10 kg Spanish mackerel from as few as one to three blotched javelin fish, suggesting that much greater amounts of toxin than modelled here must at certain times be produced and transferred through Platypus Bay food chains. This modelling highlights the need for better quantitative estimates of ciguatoxin production, biotransformation, and depuration through marine food chains to improve our understanding and management of ciguatera risk.
Collapse
|
11
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
12
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
13
|
Darius HT, Revel T, Viallon J, Sibat M, Cruchet P, Longo S, Hardison DR, Holland WC, Tester PA, Litaker RW, McCall JR, Hess P, Chinain M. Comparative Study on the Performance of Three Detection Methods for the Quantification of Pacific Ciguatoxins in French Polynesian Strains of Gambierdiscus polynesiensis. Mar Drugs 2022; 20:md20060348. [PMID: 35736151 PMCID: PMC9229625 DOI: 10.3390/md20060348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gambierdiscus and Fukuyoa dinoflagellates produce a suite of secondary metabolites, including ciguatoxins (CTXs), which bioaccumulate and are further biotransformed in fish and marine invertebrates, causing ciguatera poisoning when consumed by humans. This study is the first to compare the performance of the fluorescent receptor binding assay (fRBA), neuroblastoma cell-based assay (CBA-N2a), and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the quantitative estimation of CTX contents in 30 samples, obtained from four French Polynesian strains of Gambierdiscus polynesiensis. fRBA was applied to Gambierdiscus matrix for the first time, and several parameters of the fRBA protocol were refined. Following liquid/liquid partitioning to separate CTXs from other algal compounds, the variability of CTX contents was estimated using these three methods in three independent experiments. All three assays were significantly correlated with each other, with the highest correlation coefficient (r2 = 0.841) found between fRBA and LC-MS/MS. The CBA-N2a was more sensitive than LC-MS/MS and fRBA, with all assays showing good repeatability. The combined use of fRBA and/or CBA-N2a for screening purposes and LC-MS/MS for confirmation purposes allows for efficient CTX evaluation in Gambierdiscus. These findings, which support future collaborative studies for the inter-laboratory validation of CTX detection methods, will help improve ciguatera risk assessment and management.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Manoëlla Sibat
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Sébastien Longo
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| | - Donnie Ransom Hardison
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, Center for Coastal Fisheries and Habitat Research, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.)
| | | | - R. Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA;
| | - Jennifer R. McCall
- Center for Marine Science, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA;
| | - Philipp Hess
- IFREMER, PHYTOX, Laboratoire METALG, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, French Polynesia; (T.R.); (J.V.); (P.C.); (S.L.); (M.C.)
| |
Collapse
|
14
|
Gaiani G, Cucchi F, Toldrà A, Andree KB, Rey M, Tsumuraya T, O'Sullivan CK, Diogène J, Campàs M. Electrochemical biosensor for the dual detection of Gambierdiscus australes and Gambierdiscus excentricus in field samples. First report of G. excentricus in the Balearic Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150915. [PMID: 34653452 DOI: 10.1016/j.scitotenv.2021.150915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell-1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.
Collapse
Affiliation(s)
- Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Francesca Cucchi
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; Dipartimento di Scienze della Vita,UNITS, Via Giorgieri, 5, 34127 Trieste, Italy
| | - Anna Toldrà
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Karl B Andree
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - María Rey
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Països Catalans 26, 43007 Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
15
|
Bennett CT, Robertson A. Depuration Kinetics and Growth Dilution of Caribbean Ciguatoxin in the Omnivore Lagodon rhomboides: Implications for Trophic Transfer and Ciguatera Risk. Toxins (Basel) 2021; 13:toxins13110774. [PMID: 34822558 PMCID: PMC8623479 DOI: 10.3390/toxins13110774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Modeling ciguatoxin (CTX) trophic transfer in marine food webs has significant implications for the management of ciguatera poisoning, a circumtropical disease caused by human consumption of CTX-contaminated seafood. Current models associated with CP risk rely on modeling abundance/presence of CTX-producing epi-benthic dinoflagellates, e.g., Gambierdiscus spp., and are based on studies showing that toxin production is site specific and occurs in pulses driven by environmental factors. However, food web models are not yet developed and require parameterizing the CTX exposure cascade in fish which has been traditionally approached through top-down assessment of CTX loads in wild-caught fish. The primary goal of this study was to provide critical knowledge on the kinetics of C-CTX-1 bioaccumulation and depuration in the marine omnivore Lagodon rhomboides. We performed a two-phase, 17 week CTX feeding trial in L. rhomboides where fish were given either a formulated C-CTX-1 (n = 40) or control feed (n = 37) for 20 days, and then switched to a non-toxic diet for up to 14 weeks. Fish were randomly sampled through time with whole muscle, liver, and other pooled viscera dissected for toxin analysis by a sodium channel-dependent MTT-based mouse neuroblastoma (N2a) assay. The CTX levels measured in all tissues increased with time during the exposure period (days 1 to 20), but a decrease in CTX-specific toxicity with depuration time only occurred in viscera extracts. By the end of the depuration, muscle, liver, and viscera samples had mean toxin concentrations of 189%, 128%, and 42%, respectively, compared to fish sampled at the start of the depuration phase. However, a one-compartment model analysis of combined tissues showed total concentration declined to 56%, resulting in an approximate half-life of 97 d (R2 = 0.43). Further, applying growth dilution correction models to the overall concentration found that growth was a major factor reducing C-CTX concentrations, and that the body burden was largely unchanged, causing pseudo-elimination and a half-life of 143-148 days (R2 = 0.36). These data have important implications for food web CTX models and management of ciguatera poisoning in endemic regions where the frequency of environmental algal toxin pulses may be greater than the growth-corrected half-life of C-CTX in intermediate-trophic-level fish with high site fidelity.
Collapse
Affiliation(s)
- Clayton T. Bennett
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL 36688, USA;
- Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL 36688, USA;
- Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
- Correspondence: ; Tel.: +1-(251)-414-8163
| |
Collapse
|
16
|
Katikou P. Digital Technologies and Open Data Sources in Marine Biotoxins' Risk Analysis: The Case of Ciguatera Fish Poisoning. Toxins (Basel) 2021; 13:692. [PMID: 34678985 PMCID: PMC8539326 DOI: 10.3390/toxins13100692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, digital technologies influence information dissemination in all business sectors, with great emphasis put on exploitation strategies. Public administrations often use information systems and establish open data repositories, primarily supporting their operation but also serving as data providers, facilitating decision-making. As such, risk analysis in the public health sector, including food safety authorities, often relies on digital technologies and open data sources. Global food safety challenges include marine biotoxins (MBs), being contaminants whose mitigation largely depends on risk analysis. Ciguatera Fish Poisoning (CFP), in particular, is a MB-related seafood intoxication attributed to the consumption of fish species that are prone to accumulate ciguatoxins. Historically, CFP occurred endemically in tropical/subtropical areas, but has gradually emerged in temperate regions, including European waters, necessitating official policy adoption to manage the potential risks. Researchers and policy-makers highlight scientific data inadequacy, under-reporting of outbreaks and information source fragmentation as major obstacles in developing CFP mitigation strategies. Although digital technologies and open data sources provide exploitable scientific information for MB risk analysis, their utilization in counteracting CFP-related hazards has not been addressed to date. This work thus attempts to answer the question, "What is the current extent of digital technologies' and open data sources' utilization within risk analysis tasks in the MBs field, particularly on CFP?", by conducting a systematic literature review of the available scientific and grey literature. Results indicate that the use of digital technologies and open data sources in CFP is not negligible. However, certain gaps are identified regarding discrepancies in terminology, source fragmentation and a redundancy and downplay of social media utilization, in turn constituting a future research agenda for this under-researched topic.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate General of Rural Development, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
| |
Collapse
|
17
|
Xu Y, He X, Lee WH, Chan LL, Lu D, Wang P, Tao X, Li H, Yu K. Ciguatoxin-Producing Dinoflagellate Gambierdiscus in the Beibu Gulf: First Report of Toxic Gambierdiscus in Chinese Waters. Toxins (Basel) 2021; 13:toxins13090643. [PMID: 34564646 PMCID: PMC8473099 DOI: 10.3390/toxins13090643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ciguatera poisoning is mainly caused by the consumption of reef fish that have accumulated ciguatoxins (CTXs) produced by the benthic dinoflagellates Gambierdiscus and Fukuyoa. China has a long history of problems with ciguatera, but research on ciguatera causative organisms is very limited, especially in the Beibu Gulf, where coral reefs have been degraded significantly and CTXs in reef fish have exceeded food safety guidelines. Here, five strains of Gambierdiscus spp. were collected from Weizhou Island, a ciguatera hotspot in the Beibu Gulf, and identified by light and scanning electron microscopy and phylogenetic analyses based on large and small subunit rDNA sequences. Strains showed typical morphological characteristics of Gambierdiscus caribaeus, exhibiting a smooth thecal surface, rectangular-shaped 2′, almost symmetric 4″, and a large and broad posterior intercalary plate. They clustered in the phylogenetic tree with G. caribaeus from other locations. Therefore, these five strains belonged to G. caribaeus, a globally distributed Gambierdiscus species. Toxicity was determined through the mouse neuroblastoma assay and ranged from 0 to 5.40 fg CTX3C eq cell−1. The low level of toxicity of G. caribaeus in Weizhou Island, with CTX-contaminated fish above the regulatory level in the previous study, suggests that the long-term presence of low toxicity G. caribaeus might lead to the bioaccumulation of CTXs in fish, which can reach dangerous CTX levels. Alternatively, other highly-toxic, non-sampled strains could be present in these waters. This is the first report on toxic Gambierdiscus from the Beibu Gulf and Chinese waters and will provide a basis for further research determining effective strategies for ciguatera management in the area.
Collapse
Affiliation(s)
- Yixiao Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xilin He
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Wai Hin Lee
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Leo Lai Chan
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xiaoping Tao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Huiling Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
18
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|