1
|
Pacheco S, Gallegos AS, Peláez-Aguilar ÁE, Sánchez J, Gómez I, Soberón M, Bravo A. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012256. [PMID: 38870209 PMCID: PMC11207138 DOI: 10.1371/journal.pntd.0012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.
Collapse
Affiliation(s)
- Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Adrián S. Gallegos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Ángel E. Peláez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Thammasittirong A, Thammasittirong SNR. Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis uses both domains II and III to bind to its receptor- Aedes aegypti alkaline phosphatase. Heliyon 2023; 9:e19458. [PMID: 37810109 PMCID: PMC10558600 DOI: 10.1016/j.heliyon.2023.e19458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Receptor binding is one of the crucial steps to exhibit the insecticidal activity of Cry toxins. In addition, binding to receptors is a determining step for the specificity of toxins. In this work, receptor binding domain II was cloned from the full-length Cry4Ba toxin and heterologously expressed in Escherichia coli. The 21 kDa purified protein was characterized as Cry4Ba domain II using Western blotting and tandem mass spectrometry coupled to liquid chromatography. Circular dichroism revealed the correct folding of the isolated domain II fragment, similar to that found in the Cry4Ba protein. Binding analysis using an enzyme-linked immunosorbent assay revealed that the purified Cry4Ba-domain II had bound to the 54 kDa alkaline phosphatase cloned from Aedes aegypti (Aa-mALP) with a dissociation constant of approximately 116.27 ± 11.09 nM. The binding affinity of Cry4Ba-domain II to Aa-mALP was comparable to that of Cry4Ba domain III, suggesting that both domains II and III of the Cry4Ba contributed equally in binding to the Aa-mALP protein. Our findings should provide more valuable insight on the molecular mechanisms in the toxin-receptor interaction of the Cry4Ba toxin.
Collapse
Affiliation(s)
- Anon Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Sutticha Na Ranong Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
3
|
Ge L, Song L, Wang L, Li Y, Sun Y, Wang C, Chen J, Wu G, Pan A, Wu Y, Quan Z, Li P. Evaluating response mechanisms of soil microbiomes and metabolomes to Bt toxin additions. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130904. [PMID: 36860032 DOI: 10.1016/j.jhazmat.2023.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides may result in environmental hazards such as adverse impacts on soil microorganisms. However, the dynamic relationships among exogenous Bt toxins, soil characteristics, and soil microorganisms are not well understood. Cry1Ab is one of the most commonly used Bt toxins and was added to soils in this study to evaluate subsequent changes in soil physiochemical properties, microbial taxa, microbial functional genes, and metabolites profiles via 16S rRNA gene pyrosequencing, high-throughput qPCR, metagenomic shotgun sequencing, and untargeted metabolomics. Higher additions of Bt toxins led to higher concentrations of soil organic matter (SOM), ammonium (NH+4-N), and nitrite (NO2--N) compared against controls without addition after 100 days of soil incubation. High-throughput qPCR analysis and shotgun metagenomic sequencing analysis revealed that the 500 ng/g Bt toxin addition significantly affected profiles of soil microbial functional genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycling after 100 days of incubation. Furthermore, combined metagenomic and metabolomic analyses indicated that the 500 ng/g Bt toxin addition significantly altered low molecular weight metabolite profiles of soils. Importantly, some of these altered metabolites are involved in soil nutrient cycling, and robust associations were identified among differentially abundant metabolites and microorganisms due to Bt toxin addition treatments. Taken together, these results suggest that higher levels of Bt toxin addition can alter soil nutrients, probably by affecting the activities of Bt toxin-degrading microorganisms. These dynamics would then activate other microorganisms involved in nutrient cycling, finally leading to broad changes in metabolite profiles. Notably, the addition of Bt toxins did not cause the accumulation of potential microbial pathogens in soils, nor did it adversely affect the diversity and stability of microbial communities. This study provides new insights into the putative mechanistic associations among Bt toxins, soil characteristics, and microorganisms, providing new understanding into the ecological impacts of Bt toxins on soil ecosystems.
Collapse
Affiliation(s)
- Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jun Chen
- East China University of Technology, Nanchang 330013, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Aihu Pan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yunfei Wu
- The College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zhexue Quan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
4
|
Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor. Toxins (Basel) 2023; 15:toxins15020114. [PMID: 36828427 PMCID: PMC9960242 DOI: 10.3390/toxins15020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Receptor binding is a prerequisite process to exert the mosquitocidal activity of the Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis. The beta-sheet prism (domain II) and beta-sheet sandwich (domain III) of the Cry4Ba toxin have been implicated in receptor binding, albeit the precise binding mechanisms of these remain unclear. In this work, alanine scanning was used to determine the contribution to receptor binding of some aromatic and hydrophobic residues on the surface of domains II and III that are predicted to be responsible for binding to the Aedes aegypti membrane-bound alkaline phosphatase (Aa-mALP) receptor. Larvicidal activity assays against A. aegypti larvae revealed that aromatic residues (Trp327 on the β2 strand, Tyr347 on the β3-β4 loop, and Tyr359 on the β4 strand) of domain II were important to the toxicity of the Cry4Ba toxin. Quantitative binding assays using enzyme-linked immunosorbent assay (ELISA) showed similar decreasing trends in binding to the Aa-mALP receptor and in toxicity of the Cry4Ba mutants Trp327Ala, Tyr347Ala, and Tyr359Ala, suggesting that a possible function of these surface-exposed aromatic residues is receptor binding. In addition, binding assays of the Cry4Ba toxin to the mutants of the binding residues Gly513, Ser490, and Phe497 of the Aa-mALP receptor supported the binding function of Trp327, Tyr347, and Tyr359 of the Cry4Ba toxin, respectively. Altogether, our results showed for the first time that aromatic residues on a side surface of the Cry4Ba domain II function in receptor binding. This finding provides greater insight into the possible molecular mechanisms of the Cry4Ba toxin.
Collapse
|
5
|
Dechkla M, Charoenjotivadhanakul S, Imtong C, Visitsattapongse S, Li HC, Angsuthanasombat C. Cry4Aa and Cry4Ba Mosquito-Active Toxins Utilize Different Domains in Binding to a Particular Culex ALP Isoform: A Functional Toxin Receptor Implicating Differential Actions on Target Larvae. Toxins (Basel) 2022; 14:toxins14100652. [PMID: 36287921 PMCID: PMC9607545 DOI: 10.3390/toxins14100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The three-domain Cry4Aa toxin produced from Bacillus thuringiensis subsp. israelensis was previously shown to be much more toxic to Culex mosquito larvae than its closely related toxin—Cry4Ba. The interaction of these two individual toxins with target receptors on susceptible larval midgut cells is likely to be the critical determinant in their differential toxicity. Here, two full-length membrane-bound alkaline phosphatase (mALP) isoforms from Culex quinquefasciatus larvae, Cq-mALP1263and Cq-mALP1264, predicted to be GPI-linked was cloned and functionally expressed in Spodoptera frugiperda (Sf9) cells as 57- and 61-kDa membrane-bound proteins, respectively. Bioinformatics analysis disclosed that both Cq-mALP isoforms share significant sequence similarity to Aedes aegypti-mALP—a Cry4Ba toxin receptor. In cytotoxicity assays, Sf9 cells expressing Cq-mALP1264, but not Cq-mALP1263, showed remarkably greater susceptibility to Cry4Aa than Cry4Ba, while immunolocalization studies revealed that both toxins were capable of binding to each Cq-mALP expressed on the cell membrane surface. Molecular docking of the Cq-mALP1264-modeled structure with individual Cry4 toxins revealed that Cry4Aa could bind to Cq-mALP1264 primarily through particular residues on three surface-exposed loops in the receptor-binding domain—DII, including Thr512, Tyr513 and Lys514 in the β10-β11loop. Dissimilarly, Cry4Ba appeared to utilize only certain residues in its C-terminal domain—DIII to interact with such a Culex counterpart receptor. Ala-substitutions of selected β10-β11loop residues (T512A, Y513A and K514A) revealed that only the K514A mutant displayed a drastic decrease in biotoxicity against C. quinquefasciatus larvae. Further substitution of Lys514 with Asp (K514D) revealed a further decrease in larval toxicity. Furthermore, in silico calculation of the binding affinity change (ΔΔGbind) in Cry4Aa-Cq-mALP1264 interactions upon these single-substitutions revealed that the K514D mutation displayed the largest ΔΔGbind value as compared to three other mutations, signifying an adverse impact of a negative charge at this critical receptor-binding position. Altogether, our present study has disclosed that these two related-Cry4 mosquito-active toxins conceivably exploited different domains in functional binding to the same Culex membrane-bound ALP isoform—Cq-mALP1264 for mediating differential toxicity against Culex target larvae.
Collapse
Affiliation(s)
- Manussawee Dechkla
- Department of Environmental Biology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
- Correspondence: (M.D.); (C.A.)
| | - Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Structural Biochemistry and Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand
| | - Sarinporn Visitsattapongse
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 73170, Thailand
- Laboratory of Structural Biochemistry and Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (M.D.); (C.A.)
| |
Collapse
|
6
|
Complete structure elucidation of a functional form of the Bacillus thuringiensis Cry4Ba δ-endotoxin: Insights into toxin-induced transmembrane pore architecture. Biochem Biophys Res Commun 2022; 620:158-164. [DOI: 10.1016/j.bbrc.2022.06.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|