1
|
Winkiel MJ, Chowański S, Walkowiak-Nowicka K, Lubawy J, Słocińska M. Modulation of the antioxidant system by glycoalkaloids in the beetle Tenebrio molitor L. Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110018. [PMID: 39218133 DOI: 10.1016/j.cbpc.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Various factors may affect the antioxidative system in insects, including xenobiotics. Glycoalkaloids (GAs) are plant secondary metabolites produced mainly by the Solanaceae family (nightshades), such as the food crop tomato Solanum lycopersicum L. These compounds exhibit a wide range of biological activities and have attracted increasing interest in the context of potential insecticide properties. Therefore, the aim of the presented study was to analyze the effects of GAs (solanine, chaconine, tomatine, and extracts of tomato leaves) on lipid peroxidation; the expression levels of genes encoding manganese superoxide dismutase (MnSOD), catalase (CAT), and heat shock protein 70 (HSP70); and the enzymatic activity of SOD and CAT in Tenebrio molitor larvae. This species is amodel organism for toxicological and ecophysiological studies and is also a pest of grain storage. The reported changes depend on the GA concentration, incubation time, and type of insect tissue. We observed that the tested GAs affected MnSOD expression levels, increased SOD activity in the fat body, and reduced enzyme activity in the gut. The results showed that CAT expression was upregulated in the fat body and that the enzymatic activity of CAT in the gut was greater in the treated group than in the control group. Moreover, GAs affected HSP70 expression and malondialdehyde levels in both tested tissues. This research contributes to our knowledge about the effects of GAs on the antioxidative system of T. molitor beetles. As efficient antioxidative system functioning is necessary for survival, the tested components may be targets of potential bioinsecticides.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Winkiel MJ, Chowański S, Walkowiak-Nowicka K, Gołębiowski M, Słocińska M. A tomato a day keeps the beetle away - the impact of Solanaceae glycoalkaloids on energy management in the mealworm Tenebrio molitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58581-58598. [PMID: 39317900 PMCID: PMC11467077 DOI: 10.1007/s11356-024-35099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Solanine (SOL), chaconine (CHA), and tomatine (TOM) are plant secondary metabolites produced mainly by the species of Solanaceae family, such as tomato Solanum lycopersicum L. These glycoalkaloids (GAs) have a wide range of biological activity, also in insects. However, their mechanisms of action are not precisely understood. The purpose of the study was to investigate how pure GAs and tomato leaf extract (EXT) affect glycolysis, Krebs cycle and β-oxidation of fatty acid pathways in Tenebrio molitor L. beetle. For this purpose, the larvae were injected with SOL, CHA, TOM, and EXT at two concentrations (10-8 and 10-5 M). For experiments, fat body, gut, and heamolymph samples were collected 2 and 24 h after injection. Then, the changes in the expression level of phosphofructokinase, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase were measured using the RT-qPCR technique. The catalytic activity of these enzymes and the carbohydrate level in insects after GA treatment were determined by spectrophotometric method. Furthermore, the analysis of the amount of amino acids in tissues was performed with a GC-MS technique. The results obtained show that the GAs changed the activity and expression of the genes encoding key enzymes of crucial metabolic pathways. The effect depends on the type of GA compound, the tissue tested, and the incubation time after treatment. Furthermore, TOM and EXT affected trehalose concentration in the insect hemolymph and led to accumulation of amino acids in the fat body. The observed changes may indicate a protein degradation and/or enhanced catabolism reactions for the production of ATP used in detoxification processes. These results suggest that GAs alter energy metabolism in the mealworm T. molitor. The study contributes to our understanding of the mechanisms of action of secondary metabolites of plants in insects. This knowledge may allow the design of new natural biopesticides against insect pests because proper energy metabolism is necessary for the survival of the organism.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Winkiel MJ, Chowański S, Sulli M, Diretto G, Słocińska M. Analysis of glycoalkaloid distribution in the tissues of mealworm larvae (Tenebrio molitor). Sci Rep 2024; 14:16540. [PMID: 39020013 PMCID: PMC11254912 DOI: 10.1038/s41598-024-67258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of Tenebrio molitor using LC‒MS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 μL of 10-5 M SOL or CHA solution, which corresponds to a dosage range of 0.12-0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
4
|
Winkiel MJ, Chowański S, Gołębiowski M, Bufo SA, Słocińska M. Solanaceae Glycoalkaloids Disturb Lipid Metabolism in the Tenebrio molitor Beetle. Metabolites 2023; 13:1179. [PMID: 38132861 PMCID: PMC10744845 DOI: 10.3390/metabo13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Glycoalkaloids (GAs) are produced naturally by plants and affect insect survivability and fertility. These compounds can be considered potential bioinsecticides; however, the mechanisms and effects of their action remain undiscovered. As lipids are essential molecules for the proper functioning of an insect organism, this research aimed to determine the effects of GAs on the lipid metabolism of the Tenebrio molitor beetle. Solanine, chaconine, tomatine, and tomato leaf extract were applied to larvae by injection at two concentrations, 10-8 and 10-5 M. Then, the tissue was isolated after 2 and 24 h to determine the levels of free fatty acids, sterols and esters using the GC-MS technique. Moreover, the triacylglyceride level and the activity of the key β-oxidation enzyme, 3-hydroxyacyl-CoA dehydrogenase (HADH), were measured. The results indicate that GAs affect the content and composition of lipid compounds in the beetles' haemolymph and fat body. The effects depend on the GA concentrations, incubation time, and kind of tissue. Moreover, the tested compounds decrease HADH activity, especially in the fat body, which may affect energy production. To our knowledge, this is the first study concerning lipid metabolism in T. molitor after GA application. Our results provide some insights into that topic.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| |
Collapse
|
5
|
Li J, Jia Y, Zhang D, Li Z, Zhang S, Liu X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. INSECT MOLECULAR BIOLOGY 2023; 32:305-315. [PMID: 36661850 DOI: 10.1111/imb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 05/15/2023]
Abstract
Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yujie Jia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Nepal B, Stine KJ. Atomic force microscopy study of the complexation of sterols and the glycoalkaloid α-tomatine in Langmuir-Blodgett monolayers. Chem Phys Lipids 2023; 252:105293. [PMID: 36931584 DOI: 10.1016/j.chemphyslip.2023.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Glycoalkaloids are secondary metabolites produced by plants that aid in their protection from pathogens and pests. They are known to form 1:1 complexes with 3β-hydroxysterols such as cholesterol causing membrane disruption. So far, the visual evidence showcasing the complexes formed between glycoalkaloids and sterols in monolayers has been mainly restricted to some earlier studies using Brewster angle microscopy which were of low resolution showing the formation of floating aggregates of these complexes. This study is aimed at using atomic force microscopy (AFM) for topographic and morphological analysis of the aggregates of these sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of mixed monolayers of the glycoalkaloid α-tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method allowed visualization of the aggregation of sterol-glycoalkaloid complexes at nanometer resolution. While aggregation was observed in mixed monolayers of α-tomatine with cholesterol and in mixed monolayers with coprostanol, no sign of complexation was observed for the mixed monolayers of epicholesterol and α-tomatine, confirming their lack of interaction found in prior monolayer studies. Aggregates were observed in transferred monolayers of ternary mixtures of α-tomatine with cholesterol and the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or egg sphingomyelin (egg SM). The formation of aggregates was found to be less prevalent for mixed monolayers of DMPC and cholesterol containing α-tomatine than it was for mixed monolayers containing egg SM and cholesterol with α-tomatine. The observed aggregates were generally elongated structures, of a width ranging from about 40-70 nm.
Collapse
Affiliation(s)
- Bishal Nepal
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121, USA.
| |
Collapse
|
7
|
Urbański A, Konopińska N, Bylewska N, Gmyrek R, Spochacz-Santoro M, Bufo SA, Adamski Z. Solanum nigrum Fruit Extract Modulates Immune System Activity of Mealworm Beetle, Tenebrio molitor L. Toxins (Basel) 2023; 15:68. [PMID: 36668887 PMCID: PMC9861574 DOI: 10.3390/toxins15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Here, we report the first evidence concerning the modulation of insect immune system activity after applying Solanum nigrum fruit extract (EXT). We focused on two main issues: (1) is EXT cytotoxic for Tenebrio molitor haemocytes? and (2) how EXT affects the basic immune mechanisms of T. molitor. The results indicate cytotoxic action of 0.01 and 0.1% EXT on beetle haemocytes. Both the injection of EXT and incubating haemocytes with the EXT solution on microscopic slides significantly increased the number of apoptotic cells. However, 24 h after injection of 0.1% EXT cytotoxic effect of the tested extract probably was masked by the increased number of circulating haemocytes. Application of 0.01 and 0.1% EXT led to impairment of the activity of basic immune mechanisms such as phenoloxidase activity and the lysozyme-like antimicrobial activity of T. molitor haemolymph. Moreover, the EXT elicited significant changes in the expression level of selected immune genes. However, some of the immunomodulatory effects of EXT were different in beetles with and without an activated immune system. The obtained results are an essential step toward a complete understanding of the EXT mode of action on the T. molitor physiology and its potential usage in pest control.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Natalia Konopińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Natalia Bylewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Radosław Gmyrek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Marta Spochacz-Santoro
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Winkiel MJ, Chowański S, Słocińska M. Anticancer activity of glycoalkaloids from Solanum plants: A review. Front Pharmacol 2022; 13:979451. [PMID: 36569285 PMCID: PMC9767987 DOI: 10.3389/fphar.2022.979451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is Solanaceae glycoalkaloids (GAs). They are natural compounds produced by plants widely used in traditional medicine for healing many disorders. Among others, GAs exhibit significant antitumor properties, for example, a strong inhibitory effect on cancer cell growth. This activity can result in the induction of tumor cell apoptosis, which can occur via different molecular pathways. The molecular mechanisms of the action of GAs are the subject of intensive research, as improved understanding could lead to the development of new cancer therapies. The genetic basis for the formation of neoplasms are mutations in protooncogenes, suppressors, and apoptosis-controlling and repair genes; therefore, substances with antineoplastic properties may affect the levels of their expression or the levels of their expression products. Therapeutic compounds can be applied separately or in combination with other drugs to increase the efficiency of cancer therapy; they can act on the cell through various mechanisms at different stages of carcinogenesis, inducing the process of apoptosis, blocking cell proliferation and migration, and inhibiting angiogenesis. This review summarizes the newest studies on the anticancer properties of solanine (SN), chaconine (CH), solasonine (SS), solamargine (SM), tomatine (TT) and their extracts from Solanum plants.
Collapse
|
9
|
Chowański S, Winkiel M, Szymczak-Cendlak M, Marciniak P, Mańczak D, Walkowiak-Nowicka K, Spochacz M, Bufo SA, Scrano L, Adamski Z. Solanaceae glycoalkaloids: α-solanine and α-chaconine modify the cardioinhibitory activity of verapamil. PHARMACEUTICAL BIOLOGY 2022; 60:1317-1330. [PMID: 35811507 PMCID: PMC9275482 DOI: 10.1080/13880209.2022.2094966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Solanaceae glycoalkaloids (SGAs) possess cardiomodulatory activity. OBJECTIVE This study investigated the potential interaction between verapamil and glycoalkaloids. MATERIAL AND METHODS The cardioactivity of verapamil and glycoalkaloids (α-solanine and α-chaconine) was tested in adult beetle (Tenebrio molitor) myocardium in vitro using microdensitometric methods. The myocardium was treated with pure substances and mixtures of verapamil and glycoalkaloids for 9 min with saline as a control. Two experimental variants were used: simultaneous application of verapamil and glycoalkaloids or preincubation of the myocardium with one of the compounds followed by perfusion with a verapamil solution. We used 9 × 10-6-5 × 10-5 M and 10-9-10-5 M concentration for verapamil and glycoalkaloids, respectively. RESULTS Verapamil, α-solanine and α-chaconine showed cardioinhibitory activity with IC50 values equal to 1.69 × 10-5, 1.88 × 10-7 and 7.48 × 10-7 M, respectively. When the glycoalkaloids were applied simultaneously with verapamil, an antagonistic effect was observed with a decrease in the maximal inhibitory effect and prolongation of t50 and the recovery time characteristic of verapamil. We also confirmed the expression of two transcript forms of the gene that encodes the α1 subunit of L-type calcium channels in the myocardium and brain with equal transcription levels of both forms in the myocardium and significant domination of the shorter form in the brain of the insect species tested. DISCUSSION AND CONCLUSIONS The results show that attention to the composition of the daily diet during therapy with various drugs is particularly important. In subsequent studies, the nature of interaction between verapamil and SGAs on the molecular level should be checked, and whether this interaction decreases the efficiency of cardiovascular therapy with verapamil in humans.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dominika Mańczak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marta Spochacz
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Laura Scrano
- Department of Sciences, University of Basilicata, Potenza, Italy
- Department of European Culture, University of Basilicata, Matera, Italy
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|