1
|
Volnin A, Parshikov A, Tsybulko N, Mizina P, Sidelnikov N. Ergot alkaloid control in biotechnological processes and pharmaceuticals (a mini review). FRONTIERS IN TOXICOLOGY 2024; 6:1463758. [PMID: 39439532 PMCID: PMC11493748 DOI: 10.3389/ftox.2024.1463758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The control of ergot alkaloids in biotechnological processes is important in the context of obtaining new strain producers and studying the mechanisms of the biosynthesis, accumulation and secretion of alkaloids and the manufacturing of alkaloids. In pharmaceuticals, it is important to analyze the purity of raw materials, especially those capable of racemization, quality control of dosage forms and bulk drugs, stability during storage, etc. This review describes the methods used for qualitative and quantitative chemical analysis of ergot alkaloids in tablets and pharmaceutic forms, liquid cultural media and mycelia from submerged cultures of ergot and other organisms producing ergoalkaloid, sclerotias of industrial Claviceps spp. parasitic strains. We reviewed analytical approaches for the determination of ergopeptines (including their dihydro- and bromine derivatives) and semisynthetic ergot-derived medicines such as cabergoline, necergoline and pergolide, including precursors for their synthesis. Over the last few decades, strategies and approaches for the analysis of ergoalkaloids for medical use have changed, but the general principles and objectives have remained the same as before. These changes are related to the development of new genetically improved strains producing ergoalkaloids and the development of technologies for the online control of biotechnological processes and pharmaceutical manufacturing ("process analytical technologies," PAT). Overall, the industry is moving toward "smart manufacturing." The development of approaches to production cost estimation and product quality management, manufacturing management, increasing profitability and reducing the negative impact on personnel and the environment are integral components of sustainable development. Analytical approaches for the analysis of ergot alkaloids in pharmaceutical raw materials should have high enough specificity for the separation of dihydro derivatives, enantiomers and R-S epimers of alkaloids, but low values of the quantitative detection limit are less frequently needed. In terms of methodology, detection methods based on mass spectrometry have become more developed and widespread, but NMR analysis remains in demand because of its high accuracy and specificity. Both rapid methods and liquid chromatography remain in demand in routine practice, with rapid analysis evolving toward higher accuracy owing to improved analytical performance and new equipment. New composite electrochemical sensors (including disposable sensors) have demonstrated potential for real-time process control.
Collapse
Affiliation(s)
- A. Volnin
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - A. Parshikov
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - N. Tsybulko
- Laboratory of Biotechnology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - P. Mizina
- Center of Chemistry and Pharmaceutical Technology, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - N. Sidelnikov
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| |
Collapse
|
2
|
Cherewyk JE, Blakley BR, Al-Dissi AN. The C-8-S-isomers of ergot alkaloids - a review of biological and analytical aspects. Mycotoxin Res 2024; 40:1-17. [PMID: 37953416 PMCID: PMC10834577 DOI: 10.1007/s12550-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Ergot alkaloids are secondary metabolites that are produced by fungi and contaminate cereal crops and grasses. The ergot alkaloids produced by Claviceps purpurea are the most abundant worldwide. The metabolites exist in two configurations, the C-8-R-isomer (R-epimer) and the C-8-S-isomer (S-epimer). These two configurations can interconvert to one another. Ergot alkaloids cause toxic effects after consumption of ergot-contaminated food and feed at various concentrations. For bioactivity reasons, the C-8-R-isomers have been studied to a greater extent than the C-8-S-isomer since the C-8-S-isomers were considered biologically inactive. However, recent studies suggest the contrary. Analytical assessment of ergot alkaloids now includes the C-8-S-isomers and high concentrations of specific C-8-S-isomers have been identified. The inclusion of the C-8-S-isomer in regulatory standards is reviewed. This review has identified that further research into the C-8-S-isomers of ergot alkaloids is warranted. In addition, the inclusion of the C-8-S-isomers into regulatory recommendations worldwide for food and feed should be implemented. The objectives of this review are to provide an overview of historic and current studies that have assessed the C-8-S-isomers. Specifically, this review will compare the C-8-R-isomers to the C-8-S-isomers with an emphasis on the biological activity and analytical assessment.
Collapse
Affiliation(s)
- Jensen E Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Barry R Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Gropp J, Mulder P, Oswald IP, Woutersen R, Gómez Ruiz JÁ, Rovesti E, Hoogenboom L(R. Risks for animal health related to the presence of ergot alkaloids in feed. EFSA J 2024; 22:e8496. [PMID: 38264299 PMCID: PMC10804272 DOI: 10.2903/j.efsa.2024.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and β-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.
Collapse
|
4
|
Kowalczyk E, Kwiatek K. Development, in-house validation and application of a method using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) for the quantification of 12 ergot alkaloids in compound feeds. J Vet Res 2023; 67:603-610. [PMID: 38130451 PMCID: PMC10730548 DOI: 10.2478/jvetres-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Ergot alkaloids (EAs) are toxic substances naturally produced by Claviceps fungi. These fungi infest a wide range of cereals and grasses. When domestic animals are exposed to EAs through contaminated feeds, it is detrimental to them and leads to significant economic losses. For that reason, it is important to monitor feed for the presence of EAs, especially with methods enabling their determination in processed materials. Material and Methods Ergot alkaloids were extracted with acetonitrile, and dispersive solid phase extraction (d-SPE) was used for clean-up of the extracts. After evaporation, the extracts were reconstituted in ammonium carbonate and acetonitrile and subjected to instrumental analysis using high-performance liquid chromatography with fluorescence detection. The developed method was validated in terms of linearity, selectivity, repeatability, reproducibility, robustness, matrix effect, limits of quantification and detection and uncertainty. The EA content of 40 compound feeds was determined. Results All the assessed validation parameters fulfilled the requirements of Regulation (EU) 2021/808. At least one of the monitored alkaloids was determined in 40% of the samples. The EAs with the highest incidence rate were ergocryptine, ergometrinine and ergocornine. The total concentrations of EAs ranged from under the limit of quantification to 62.3 μg kg-1. Conclusion The results demonstrated that the developed method was suitable for simultaneously determining twelve EAs in compound feed and could be used for routine analysis.
Collapse
Affiliation(s)
- Ewelina Kowalczyk
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
5
|
Ma Z, Sheng N, Zhang J. A feasible protocol to profile bile acids in dried blood spots from rats using a UHPLC-MS/MS method combining a surrogate matrix. Analyst 2023; 148:5190-5202. [PMID: 37721130 DOI: 10.1039/d3an00900a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Dried blood spot (DBS) sampling is a promising method for microliter blood sample collection with the advantages of convenient transportation, storage and clinical operations. However, it is challenging to develop an analytical protocol to determine endogenous metabolites, such as bile acids (BAs) in DBSs, due to the low-blood-volume character of DBSs and the complex features of filter paper. Herein, we developed a method of fast ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) to profile and quantify BAs in DBSs. The pretreatment methods were optimized and a two-step solvent addition method, where a small amount of water was firstly added to moisten the DBS and then methanol was added, showed high extraction efficiency for multiple BAs in DBSs. The UHPLC-MS/MS conditions were optimized and 35BAs in different types could be profiled with good resolution and quantified with acceptable precision and accuracy. Preparation of a DBS surrogate matrix without endogenous BAs has been well developed using rat erythrocytes in BSA solution and showed good performance on both the signal suppression/enhancement percentage and parallelism assessment evaluation of three different stable-isotope-labeled (SIL) BAs. The established protocol was successfully applied to profile BAs in DBSs of intrahepatic cholestasis model and healthy control rats with good repeatability. To our knowledge, it is the first time that 35 BAs in DBSs could be well profiled and an appropriate DBS surrogate matrix has been developed. This protocol presents future-oriented applications of DBSs for relevant preclinical studies to profile BAs and probe biomarkers.
Collapse
Affiliation(s)
- Ziying Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| |
Collapse
|
6
|
Cherewyk JE, Grusie-Ogilvie TJ, Parker SE, Blakley BR, Al-Dissi AN. The Impact of Storage Temperature and Time on Ergot Alkaloid Concentrations. Toxins (Basel) 2023; 15:497. [PMID: 37624254 PMCID: PMC10467117 DOI: 10.3390/toxins15080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Ergot sclerotia produce toxic secondary metabolites, ergot alkaloids, that infect cereal crops and grasses. Ergot alkaloids have two isomeric configurations: the C-8-R-isomer (R-epimer), and the C-8-S-isomer (S-epimer). Ergot contaminated matrices, such as cereal grains or grasses, may be stored for extended periods at various temperatures before being analyzed, utilized, or consumed. This study assessed the concentration of six common ergot alkaloids in both configurations found in naturally contaminated wheat over time (one, two, and four months) at different temperatures (room temperature, +4 °C, and -20 °C) using ultra-high-performance liquid chromatography-tandem mass spectrometry. The data indicate that the total ergot concentration within a natural contaminated sample varies over time at room temperature, +4 °C, and -20 °C. The total ergot concentration increased until month two, and decreased at month four, independent of temperature (p < 0.05). The total R-epimer concentration appeared to be less stable over time than the total S-epimer concentration. The changes in the total R and total S-epimer concentrations may have been caused by changes in the ergocristine and ergocristinine concentrations, respectively. Time and temperature should be considered when storing potentially contaminated matrices in a laboratory or practical agriculture situations. Quantification of ergot contaminated matrices should occur prior to their use to ensure the most reliable estimates of the concentration of ergot.
Collapse
Affiliation(s)
- Jensen E. Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | | | - Sarah E. Parker
- Centre for Applied Epidemiology, Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Barry R. Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Ahmad N. Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
7
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
8
|
Cherewyk JE, Blakley BR, Al-Dissi AN. Investigation of the relationship between ergocristinine and vascular receptors. Toxicol Rep 2023; 10:604-611. [PMID: 37213815 PMCID: PMC10199403 DOI: 10.1016/j.toxrep.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023] Open
Abstract
Ergot alkaloids are secondary metabolites that exist in two configurations, the C-8-R-isomer (R-epimer), and the C-8-S-isomer (S-epimer). Toxic effects of ergot, such as vasoconstriction, have been primarily attributed to the R-epimer bioactivity, as compared to the S-epimer. Recent studies demonstrated potential bioactivity of S-epimers. Therefore, further cost-effective investigations of the S-epimers are needed. The present study investigated the S-epimer - vascular receptor binding relationship. An in silico molecular docking approach, utilizing AutoDock Vina and DockThor, was used to determine if the S-epimer (ergocristinine) binds to vascular receptors and to compare the binding affinity and interactions to the corresponding R-epimer (ergocristine) and a structural analogue (lysergic acid amide). The binding energy (kcal/mol) of ergocristinine was - 9.7 or - 11.0 to the serotonin (5-HT) 2 A receptor and - 8.7 or - 11.4 to the alpha 2 A adrenergic receptor, depending on the software used. A hydrogen bond was formed between ergocristinine and amino acid residues of the 5-HT 2 A and alpha 2 A adrenergic receptor binding sites, with bond lengths of 3.10 Å and 3.28 Å, respectively. Binding affinities and molecular interactions among the ligands to each receptor differed. Different affinities and interactions may relate to differences in the chemical structures. The binding affinities and strong molecular interactions of the S-epimer to vascular receptors may contribute to the observed physiological manifestations that occur after ergot alkaloid exposure. The results of the present study suggest further investigation on the receptor binding of the S-epimers of ergot alkaloids.
Collapse
Affiliation(s)
- Jensen E. Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4 Canada
- Corresponding author.
| | - Barry R. Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4 Canada
| | - Ahmad N. Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4 Canada
| |
Collapse
|
9
|
Cherewyk JE, Parker SE, Blakley BR, Al-Dissi AN. Sustained vascular contractile response induced by a R and S-epimer of the ergot alkaloid ergocristine, and attenuation by a non-competitive antagonist. J Anim Sci 2022; 100:6623923. [PMID: 35775420 PMCID: PMC9492154 DOI: 10.1093/jas/skac235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Vasoconstriction is a known effect associated with ergot alkaloid consumption. The vascular contractile responses are often sustained for an extended period after exposure. Ergot alkaloids exist in two molecular configurations, the C-8-(R)-isomer (R-epimer) and the C-8-(S)-isomer (S-epimer). The sustained vascular contractile response to the R-epimers have been studied previously, unlike the S-epimers which are thought to be biologically inactive. Additionally, antagonists have been utilized to attenuate the vascular contraction associated with the R-epimers of ergot alkaloids utilizing ex vivo techniques. This study utilized an arterial tissue bath to examine and compare the sustained vascular contractile response attributed to ergocristine (R) and ergocristinine (S) using dissected bovine metatarsal arteries. The contractile blocking effect of a non-competitive alpha-adrenergic antagonist, phenoxybenzamine (POB), was also investigated in precontracted arteries. Arteries (n=6/epimer) were exposed to a single dose of ergocristine or ergocristinine (1 × 10 -6 M in buffer). Each of the epimer doses were followed by a POB (1 × 10 -3 M) or methanol (control) treatment at 90 minutes and the response was observed for another 90 min. Both epimers produced a sustained contractile response over the 180 min incubation period in the control groups. The R-epimer caused a greater sustained contractile response from 60-180 min post epimer exposure, compared to the S-epimer (P < 0.05, Generalized Estimating Equations, Independent t-test). Phenoxybenzamine caused a decrease in the contractile response induced by ergocristine and ergocristinine from 105 - 180 min, compared to the control (P < 0.05, Generalized estimating equations, Paired t-test). Overall, these results demonstrate the presence of a sustained vascular contractile response attributed to the R and S-epimer of an ergot alkaloid with differences in contractile response between the epimers, suggesting differences in receptor binding mechanisms. Furthermore, this study demonstrated that a non-competitive antagonist could attenuate the sustained arterial contractile effects of both ergot configurations ex vivo. Additional investigation into S-epimers of ergot alkaloids is needed. This research contributes to the understanding of the ergot epimer-vascular receptor binding mechanisms, which may support the investigation of different approaches of minimizing ergot toxicity in livestock.
Collapse
Affiliation(s)
- Jensen E Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sarah E Parker
- Centre for Applied Epidemiology, Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Barry R Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Introduction to This Special Issue of Toxins: Application of Novel Methods for Mycotoxin Analysis. Toxins (Basel) 2022; 14:toxins14030190. [PMID: 35324687 PMCID: PMC8954468 DOI: 10.3390/toxins14030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Crop contamination by mycotoxins is a global problem that poses significant economic burdens due to the food/feed losses that are caused by reduced production rates; the resulting adverse effects on human and animal health and productivity; and the trade losses associated with the costs incurred by inspection, sampling, and analysis before and after shipments [...]
Collapse
|