1
|
Borowik P, Tkaczyk M, Pluta P, Okorski A, Stocki M, Tarakowski R, Oszako T. Distinguishing between Wheat Grains Infested by Four Fusarium Species by Measuring with a Low-Cost Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2024; 24:4312. [PMID: 39001090 PMCID: PMC11244303 DOI: 10.3390/s24134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: F. avenaceum, F. langsethiae, F. poae, and F. sporotrichioides. The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp. Two types of gas sensors that respond to the perturbation are used to collect signals useful for discriminating between the samples under study. First, an electronic nose detects the transient response of the sensors to a change in operating conditions from clean air to the presence of the gas being measured. A simple gas chamber was used to create a sudden change in gas composition near the sensors. An inexpensive pneumatic system consisting of a pump and a carbon filter was used to supply the system with clean air. It was also used to clean the sensors between measurement cycles. The second function of the electronic nose is to detect the response of the sensor to temperature disturbances of the sensor heater in the presence of the gas to be measured. It has been shown that features extracted from the transient response of the sensor to perturbations by modulating the temperature of the sensor heater resulted in better classification performance than when the machine learning model was built from features extracted from the response of the sensor in the gas adsorption phase. By combining features from both phases of the sensor response, a further improvement in classification performance was achieved. The E-nose enabled the differentiation of F. poae from the other fungal species tested with excellent performance. The overall classification rate using the Support Vector Machine model reached 70 per cent between the four fungal categories tested.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| | - Przemysław Pluta
- Forestry Students’ Scientific Association, Forest Department, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland;
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Ul. Wiejska 45E, 15-351 Białystok, Poland;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| |
Collapse
|
2
|
Qi Z, Tian L, Zhang H, Zhou X, Lei Y, Tang F. Mycobiome mediates the interaction between environmental factors and mycotoxin contamination in wheat grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172494. [PMID: 38631642 DOI: 10.1016/j.scitotenv.2024.172494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.
Collapse
Affiliation(s)
- Zhihui Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Lin Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Haiyang Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuqing Lei
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China
| | - Fang Tang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; National Engineering Research Center of Grain Storage and Logistics, Beijing 102209, PR China.
| |
Collapse
|
3
|
Stałanowska K, Szablińska-Piernik J, Pszczółkowska A, Railean V, Wasicki M, Pomastowski P, Lahuta LB, Okorski A. Antifungal Properties of Bio-AgNPs against D. pinodes and F. avenaceum Infection of Pea ( Pisum sativum L.) Seedlings. Int J Mol Sci 2024; 25:4525. [PMID: 38674112 PMCID: PMC11050071 DOI: 10.3390/ijms25084525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Ascochyta blight and Fusarium root rot are the most serious fungal diseases of pea, caused by D. pinodes and F. avenaceum, respectively. Due to the lack of fully resistant cultivars, we proposed the use of biologically synthesized silver nanoparticles (bio-AgNPs) as a novel protecting agent. In this study, we evaluated the antifungal properties and effectiveness of bio-AgNPs, in in vitro (poisoned food technique; resazurin assay) and in vivo (seedlings infection) experiments, against D. pinodes and F. avenaceum. Moreover, the effects of diseases on changes in the seedlings' metabolic profiles were analyzed. The MIC for spores of both fungi was 125 mg/L, and bio-AgNPs at 200 mg/L most effectively inhibited the mycelium growth of D. pinodes and F. avenaceum (by 45 and 26%, respectively, measured on the 14th day of incubation). The treatment of seedlings with bio-AgNPs or fungicides before inoculation prevented the development of infection. Bio-AgNPs at concentrations of 200 mg/L for D. pinodes and 100 mg/L for F. avenaceum effectively inhibited infections' spread. The comparison of changes in polar metabolites' profiles revealed disturbances in carbon and nitrogen metabolism in pea seedlings by both pathogenic fungi. The involvement of bio-AgNPs in the mobilization of plant metabolism in response to fungal infection is also discussed.
Collapse
Affiliation(s)
- Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Joanna Szablińska-Piernik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-719 Olsztyn, Poland;
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Miłosz Wasicki
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (M.W.); (P.P.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.S.); (L.B.L.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| |
Collapse
|
4
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
5
|
Borowik P, Dyshko V, Tkaczyk M, Okorski A, Polak-Śliwińska M, Tarakowski R, Stocki M, Stocka N, Oszako T. Analysis of Wheat Grain Infection by Fusarium Mycotoxin-Producing Fungi Using an Electronic Nose, GC-MS, and qPCR. SENSORS (BASEL, SWITZERLAND) 2024; 24:326. [PMID: 38257418 PMCID: PMC10820217 DOI: 10.3390/s24020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Fusarium graminearum and F. culmorum are considered some of the most dangerous pathogens of plant diseases. They are also considerably dangerous to humans as they contaminate stored grain, causing a reduction in yield and deterioration in grain quality by producing mycotoxins. Detecting Fusarium fungi is possible using various diagnostic methods. In the manuscript, qPCR tests were used to determine the level of wheat grain spoilage by estimating the amount of DNA present. High-performance liquid chromatography was performed to determine the concentration of DON and ZEA mycotoxins produced by the fungi. GC-MS analysis was used to identify volatile organic components produced by two studied species of Fusarium. A custom-made, low-cost, electronic nose was used for measurements of three categories of samples, and Random Forests machine learning models were trained for classification between healthy and infected samples. A detection performance with recall in the range of 88-94%, precision in the range of 90-96%, and accuracy in the range of 85-93% was achieved for various models. Two methods of data collection during electronic nose measurements were tested and compared: sensor response to immersion in the odor and response to sensor temperature modulation. An improvement in the detection performance was achieved when the temperature modulation profile with short rectangular steps of heater voltage change was applied.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Heweliusza 6, 10-719 Olsztyn, Poland
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland; (M.S.); (N.S.)
| | - Natalia Stocka
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland; (M.S.); (N.S.)
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| |
Collapse
|
6
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis. Toxins (Basel) 2023; 15:651. [PMID: 37999514 PMCID: PMC10675686 DOI: 10.3390/toxins15110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the "poisoning" technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Łukasz Stępień
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
7
|
Borowik P, Dyshko V, Tarakowski R, Tkaczyk M, Okorski A, Oszako T. Analysis of the Response Signals of an Electronic Nose Sensor for Differentiation between Fusarium Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:7907. [PMID: 37765964 PMCID: PMC10535949 DOI: 10.3390/s23187907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Fusarium is a genus of fungi found throughout the world. It includes many pathogenic species that produce toxins of agricultural importance. These fungi are also found in buildings and the toxins they spread can be harmful to humans. Distinguishing Fusarium species can be important for selecting effective preventive measures against their spread. A low-cost electronic nose applying six commercially available TGS-series gas sensors from Figaro Inc. was used in our research. Different modes of operation of the electronic nose were applied and compared, namely, gas adsorption and desorption, as well as modulation of the sensor's heating voltage. Classification models using the random forest technique were applied to differentiate between measured sample categories of four species: F. avenaceum, F. culmorum, F. greaminarum, and F. oxysporum. In our research, it was found that the mode of operation with modulation of the heating voltage had the advantage of collecting data from which features can be extracted, leading to the training of machine learning classification models with better performance compared to cases where the sensor's response to the change in composition of the measured gas was exploited. The optimization of the data collection time was investigated and led to the conclusion that the response of the sensor at the beginning of the heating voltage modulation provides the most useful information. For sensor operation in the mode of gas desorption/absorption (i.e., modulation of the gas composition), the optimal time of data collection was found to be longer.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland (T.O.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland (T.O.)
| |
Collapse
|
8
|
The effect of dietary supplementation with guar ( Cyamopsis tetragonoloba) meal protein on the quality and chemical composition of pig carcasses. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Recent research efforts have focused on replacing expensive imported genetically modified soybean meal (GM SBM) as a protein source in animal diets with guar meal characterized by similar nutritional characteristics, which could improve meat quality. The aim of this study was to determine the effect of guar meal protein fed to pigs on carcass quality and the content of major nutrients and fatty acids in the longissimus lumborum (LL) muscle. Pigs were divided into four groups. Control group (1) animals were fed diets containing SBM as the main protein source. In diets for experimental groups 2, 3 and 4, SBM protein was replaced with guar meal protein in 25%, 50% and 75%, respectively. It was found that SBM replacement with guar meal protein at 25% affected carcass weight and the lean content, fat content and protein content of the LL muscle. An analysis of linear correlations revealed a strong negative correlation between the concentrations of monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) in the LL muscle of pigs fed diets containing 25% of guar meal protein, which is nutritionally desirable. The results of this study suggest that the dietary inclusion of guar meal protein at up to 25% of SBM protein has no negative effects on the fattening performance of pigs. Meat quality was not affected by diets fortified with guar meal protein.
Collapse
|
9
|
Powell AJ, Kim SH, Cordero J, Vujanovic V. Protocooperative Effect of Sphaerodes mycoparasitica Biocontrol and Crop Genotypes on FHB Mycotoxin Reduction in Bread and Durum Wheat Grains Intended for Human and Animal Consumption. Microorganisms 2023; 11:microorganisms11010159. [PMID: 36677451 PMCID: PMC9861577 DOI: 10.3390/microorganisms11010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The occurrence of Fusarium Head Blight (FHB) mycotoxins in wheat grains is a major threat to global food safety and security. Humans and animals are continuously being exposed to Fusarium mycotoxins such as deoxynivalenol (DON) and its acetylated derivatives 3ADON and 15ADON through the ingestion of contaminated food or grain-based diet. In this study, a host-specific mycoparasite biocontrol agent (BCA), Sphaerodes mycoparasitica, significantly reduced FHB mycotoxin occurrence in harvested wheat grains from Fusarium graminearum 3ADON chemotype infected plants in greenhouse. Four genotypes of wheat, two common wheat and two durum wheat cultivars with varying FHB resistance levels were used in this study. Principal Coordinate Analysis (PCoA) using Illumina ITS sequences depicted beta diversity changes in Fusarium species indicating that both plant cultivar and BCA treatments influenced the Fusarium species structure and mycotoxin occurrence in grains. Fusarium graminearum complex (cluster A), F. avenaceum and F. acuminatum (cluster B), and F. proliferatum (cluster C) variants were associated with different FHB mycotoxins based on LC-MS/MS analyses. The predominant FHB mycotoxins measured were DON and its acetylated derivatives 3ADON and 15ADON. The BCA reduced the occurrence of DON in grains of all four cultivars (common wheat: 1000-30,000 µg·kg-1.; durum wheat: 600-1000 µg·kg-1) to levels below the Limit of Quantification (LOQ) of 16 µg·kg-1. A relatively higher concentration of DON was detected in the two common wheat genotypes when compared to the durum wheat genotype; however, the percentage reduction in the wheat genotypes was greater, reaching up to 99% with some S. mycoparasitica treatments. Similarly, a higher reduction in DON was measured in susceptible genotypes than in resistant genotypes. This study's findings underscore the potential of a Fusarium-specific S. mycoparasitica BCA as a safe and promising alternative that can be used in conjunction with other management practices to minimize FHB mycotoxins in cereal grain, food and feed intended for human and animal consumption.
Collapse
|
10
|
Dinolfo MI, Martínez M, Castañares E, Vanzetti LS, Rossi F, Stenglein SA, Arata AF. Interaction of methyl-jasmonate and Fusarium poae in bread wheat. Fungal Biol 2022; 126:786-792. [PMID: 36517146 DOI: 10.1016/j.funbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Fusarium Head Blight (FHB) is a devastating disease that affects the grain yield and quality of essential crops such as wheat. In the last years, some Fusarium species have acquired particular importance as Fusarium poae. However, studies to evaluate F. poae-wheat interaction are still scarce. The interaction between F. poae and two bread wheat cultivars with different resistance levels against FHB was evaluated. Moreover, the application of methyl-jasmonate (MeJA) was evaluated as a possible tool to reduce the fungal presence. Our results showed that the MeJA treatment is isolate-dependent, reducing F. poae fungal growth. A decrease in fungal biomass was observed in the susceptible cultivar after MeJA application; however, no differences between inoculated and inoculated-MeJA treatments were observed in the resistant cultivar. Finally, the F. poae inoculation induces the expression of PR1-1 and PDF 1.2, being early in the resistant cultivar compared to the susceptible ones. The application of MeJA combined with the F. poae inoculation increased PR1-1 and PDF1.2 expressions in resistant cultivars. To our knowledge, this is the first study that evaluates the interaction between F. poae and wheat and the MeJA treatment as a possible management strategy against this important pathogen.
Collapse
Affiliation(s)
- M I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina.
| | - M Martínez
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina
| | - E Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina
| | - L S Vanzetti
- Grupo Biotecnología y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 s/n, Marcos Juárez (CP2580), Córdoba, Argentina
| | - F Rossi
- Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Argentina
| | - S A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina
| | - A F Arata
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina; Centro de Investigaciones Integradas sobre Sistemas Agronómicos Sustentables (CIISAS), Facultad de Agronomía, UNCPBA. Av. República de Italia 780, Azul (7300), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Tang X, Yangjing G, Zhuoma G, Guo X, Cao P, Yi B, Wang W, Ji D, Pasquali M, Baccelli I, Migheli Q, Chen X, Cernava T. Biological characterization and in vitro fungicide screenings of a new causal agent of wheat Fusarium head blight in Tibet, China. Front Microbiol 2022; 13:941734. [PMID: 35992662 PMCID: PMC9389214 DOI: 10.3389/fmicb.2022.941734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop, widely grown throughout the temperate zones, and also suitable for cultivation at higher elevations. Fusarium head blight (FHB) is a highly destructive disease of wheat throughout the globe. In July 2020, serious wheat FHB symptoms were observed in open fields located in Linzhi City, southeast of Tibet, China. The causal agent was identified as Fusarium avenaceum (Fr.) Sacc. by amplification and sequencing of the internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (EF-1α) gene, and RNA polymerase II subunit (RPB-2) gene, as well as by morphological characterization. Koch’s postulates were confirmed by a pathogenicity test on healthy spikes, including re-isolation and identification. To our knowledge, this is the first report of F. avenaceum causing FHB on wheat in Tibet, China. Moreover, to determine pathogen characteristics that may be useful for future disease management, the utilization of different carbon and nitrogen resources, temperature, light, and ultraviolet (UV) irradiation on mycelium growth and conidia germination were studied. Soluble starch and peptone were the best carbon, and nitrogen source for the pathogen respectively. The optimal temperatures for the pathogen’s mycelium growth and conidia germination were 15–20°C, matching the average temperature during the growing season in Linzhi (Tibet). Meanwhile, alternating 8-h light and 16-h dark was shown to be conducive to mycelia growth, and complete darkness facilitated conidia germination. In addition, UV Irradiation of 48 MJ/cm2, approximately 100 times of the local condition, did not inhibit the germination of conidia. Furthermore, in vitro screening of effective fungicides was conducted. Among the seven tested pesticides, carbendazim showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 2.1 mg/L. Propiconazole also showed sufficient inhibitory effects against F. avenaceum, with an EC50 value of 2.6 mg/L. The study provides insights into the newly identified causal agent of wheat FHB in Tibet, China, as well as first pathogen characteristics and promising candidate substances for its management.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| | - Gongsang Yangjing
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
| | - Gusang Zhuoma
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
| | - Xiaofang Guo
- College of Science, Tibet University, Lhasa, China
| | - Pengxi Cao
- College of Science, Tibet University, Lhasa, China
| | - Benlin Yi
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
| | - Wumei Wang
- College of Science, Tibet University, Lhasa, China
| | - De Ji
- College of Science, Tibet University, Lhasa, China
| | - Matias Pasquali
- DeFENS - Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Quirico Migheli
- Dipartimento Di Agraria and NRD - Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- College of Science, Tibet University, Lhasa, China
- *Correspondence: Xiaoyulong Chen,
| | - Tomislav Cernava
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Tomislav Cernava,
| |
Collapse
|
13
|
Use of Secondary Metabolites of Wood-Decaying Fungi to Reduce Damping off Disease. FORESTS 2022. [DOI: 10.3390/f13081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phytopathogenic fungi can cause plant diseases that are difficult to control, including mass mortality of some tree species. The Fusarium oxysporum complex (sensu lato) is one of the most dangerous groups of phytopathogenic fungi, causing the death of conifer species, including Pinus sylvestris seedlings in forest and ornamental nurseries. Recently, non-chemical methods of plant protection have become the basis of integrated pest management (IPM) in the European Union (EC Directive). The possibility of protection of pine seedlings against the pathogen F. oxysporum using active substances from wood-destroying fungi commonly found in forests was examined. Methanolic extracts of Fomitopsis pinicola, Ganoderma applanatum, and Trametes versicolor were found to contain substances effective in both prevention and treatment of infected seedlings. G. applanatum and T. versicolor showed particular biological activity in increasing plant resistance. Efficacy, especially of the extract of F. pinicola, increased with concentration. Further field trials are needed to confirm the results obtained in laboratory tests on plant protection.
Collapse
|
14
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|