1
|
Kuzikova I, Zaytseva T, Chernova E, Povolotckaia A, Pankin D, Sazanova A, Medvedeva N. Impact of algicidal fungus Aspergillus welwitschiae GF6 on harmful bloom-forming cyanobacterium Microcystis aeruginosa: Growth and physiological responses. CHEMOSPHERE 2025; 372:144090. [PMID: 39793903 DOI: 10.1016/j.chemosphere.2025.144090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Harmful cyanobacterial blooms (HCBs) have become a common issue in freshwater worldwide. Biological methods for controlling HCBs are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland. Based on cultural and morphological features and data of phylogenetic analysis, the strain was identified as Aspergillus welwitschiae GF6. The isolated GF6 strain has algicidal activity against both cyanobacteria and green algae. The highest sensitivity to the algicidal action of strain GF6 was found in cyanobacteria (98.5-100%). The algicidal effect on green algae did not exceed 63-70%. It was shown that GF6 strain exhibited an indirect attack mode by releasing metabolites that inhibit and/or degrade algal cells. In this study, significantly increased malondialdehyde content in Microcystis aeruginosa cells indicated that GF6 strain caused oxidative damage to the algal cell membrane. Enhanced production of phytosynthetic pigments, increase in lifetime chlorophyll a fluorescence and in the levels of antioxidants were noted in Microcystis aeruginosa cells. Besides this, GF6 strain could reduce the microcystins content in the medium under inhibiting the growth of M. aeruginosa. Apart from the growth inhibition and cell degradation of M. aeruginosa, GF6 strain is able to remove microcystin-LR (MC-LR). The content of MC-LR at an initial concentration of 0.51 μg/mL decreased by 61% after 72 h of A.welwitschiae GF6 strain cultivation. In the process of MC-LR biodestruction, transformation products were identified - the conjugate of microcystin with glutathione and the linearized form of MC-LR. The isolated strain with algicidal activity and the ability to degrade microcystin is of interest for further research in order to be able to use it for convergent technology to prevent the mass development of cyanobacteria and detoxification of cyanotoxins in water bodies.
Collapse
Affiliation(s)
- Irina Kuzikova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
| | - Tatyana Zaytseva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Ekaterina Chernova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Anastasia Povolotckaia
- Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Dmitrii Pankin
- Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, Saint-Petersburg, 196608, Russia
| | - Nadezda Medvedeva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| |
Collapse
|
2
|
Ma T, Zhang J, Yang L, Zhang S, Long X, Zeng Q, Li Z, Ren X, Yang F. Reusable and Practical Biocomposite Based on Sphingopyxis sp. YF1 and Polyacrylonitrile-Based Carbon Fiber for the Efficient Bioremediation of Microcystin-LR-Contaminated Water. Toxins (Basel) 2023; 16:20. [PMID: 38251236 PMCID: PMC10819031 DOI: 10.3390/toxins16010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Microbial degradation is a cost-effective and environmentally friendly method for removing microcystin-LR (MC-LR). However, the application of free bacteria has limitations due to low operational stability and difficulties in recovery. In a previous study, our group successfully isolated a highly efficient MC-LR-degrading bacterium, Sphingopyxis sp. YF1, from Taihu. To enhance its practical potential in addressing MC-LR-contaminated water pollution, a novel biological material named polyacrylonitrile-based carbon fiber @Sphingopyxis sp. YF1 (PAN-CF@YF1) was synthesized. The immobilization conditions of strain Sphingopyxis sp. YF1 on PAN-CF surfaces were optimized using Box-Behnken design and response surface methodology (RSM), which turned out to be an optimal pH of 7.6 for the culture medium, a ratio of 0.038 g of supporting materials per 100 mL of culture media, and an incubation time of 53.4 h. The resultant PAN-CF@YF1 showed a great degradation effect both for low and high concentrations of MC-LR and exhibited satisfactory cyclic stability (85.75% after six cycles). Moreover, the application of PAN-CF@YF1 in the bioreactors demonstrated effective and sustainable MC-LR removal, with a removal efficiency of 78.83% after three consecutive treatments. Therefore, PAN-CF@YF1 with high degradation activity, environmental compatibility, straightforward preparation, and recyclability shows significant application potential for the bioremediation of MC-LR-contaminated water bodies.
Collapse
Affiliation(s)
- Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Shengyu Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Butsat W, Somdee T, Somdee T. A novel actinomycete Streptomyces enissocaesilis exhibiting algicidal activity against the toxic cyanobacterium Phormidium angustissimum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66897-66911. [PMID: 37099114 DOI: 10.1007/s11356-023-27179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Harmful cyanobacterial blooms that occur in freshwater can produce hazardous cyanotoxins as contaminants that threaten ecosystems, aquatic organisms, and human health. In the present study, the actinobacterium Streptomyces enissocaesilis, strain M35, isolated from soils, exhibited the strongest algicidal activity against the toxic cyanobacterium Phormidium angustissimum TISTR 8247. To improve the P. angustissimum removal efficiency of strain M35, the optimum carbon and nitrogen sources were determined as starch and yeast extract, respectively. Response surface methodology (RSM) using the Box-Behnken design (BBD) revealed that the optimal independent parameters among the culture medium conditions for enhancing the algicidal activity of strain M35 were 21.5 g/L starch, 0.57 g/L yeast extract, and a pH value of 8.00. The Phormidium sp. removal efficiency increased notably from 80.8 to 94.4% under the optimum conditions. In a batch experiment, the removal of P. angustissimum in an internal airlift loop (IAL) bioreactor containing immobilized strain M35 on a plastic medium indicated a high anti-Phormidium activity of 94.8%, whereas in a continuous system, strain M35 exhibited a removal efficiency of 85.5%. This study revealed that this actinobacterium could potentially be utilized to remove the toxic cyanobacterium Phormidium from water.
Collapse
Affiliation(s)
- Weeraput Butsat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Centre for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thidarat Somdee
- Faculty of Public Health, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Theerasak Somdee
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Centre for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Wei J, Pengji Z, Zhang J, Peng T, Luo J, Yang F. Biodegradation of MC-LR and its key bioactive moiety Adda by Sphingopyxis sp. YF1: Comprehensive elucidation of the mechanisms and pathways. WATER RESEARCH 2023; 229:119397. [PMID: 36459892 DOI: 10.1016/j.watres.2022.119397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (β-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7‑methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3‑methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and β-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zhou Pengji
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Zhang J, Wei J, Massey IY, Peng T, Yang F. Immobilization of Microbes for Biodegradation of Microcystins: A Mini Review. Toxins (Basel) 2022; 14:toxins14080573. [PMID: 36006234 PMCID: PMC9416196 DOI: 10.3390/toxins14080573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Harmful cyanobacterial blooms (HCBs) frequently occur in eutrophic freshwater ecosystems worldwide. Microcystins (MCs) are considered to be the most prominent and toxic metabolites during HCBs. MCs may be harmful to human and animal health through drinking water and recreational water. Biodegradation is eco-friendly, cost-effective and one of the most effective methods to remove MCs. Many novel MC-degrading bacteria and their potential for MCs degradation have been documented. However, it is a challenge to apply the free MC-degrading bacterial cells in natural environments due to the long-term operational instability and difficult recycling. Immobilization is the process of restricting the mobility of bacteria using carriers, which has several advantages as biocatalysts compared to free bacterial cells. Biological water treatment systems with microbial immobilization technology can potentially be utilized to treat MC-polluted wastewater. In this review article, various types of supporting materials and methods for microbial immobilization and the application of bacterial immobilization technology for the treatment of MCs-contaminated water are discussed. This article may further broaden the application of microbial immobilization technology to the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| |
Collapse
|