1
|
Li H, Du C, Guo T, Zhou H, Zhou Y, Huang X, Zhang YH, Wang S, Liu X, Ma L. Ratiometric electrochemical aptasensor based on split aptamer and Au-rGO for detection of aflatoxin M1. J Dairy Sci 2024; 107:2748-2759. [PMID: 38101746 DOI: 10.3168/jds.2023-23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
A novel ratiometric electrochemical aptasensor based on split aptamer and Au-reduced graphene oxide (Au-rGO) nanomaterials was proposed to detect aflatoxin M1 (AFM1). In this work, Au-rGO nanomaterials were coated on the electrode through the electrodeposition method to increase the aptamer enrichment. We split the aptamer of AFM1 into 2 sequences (S1 and S2), where S1 was immobilized on the electrode due to the Au-S bond, and S2 was tagged with methylene blue (MB) and acted as a response signal. A complementary strand to S1 (CS1) labeled with ferrocene (Fc) was introduced as another reporter. In the presence of AFM1, CS1 was released from the electrode surface due to the formation of the S1-AFM1-S2 complex, leading to a decrease in Fc and an increase in the MB signal. The developed ratiometric aptasensor exhibited a linear range of 0.03 μg L-1 to 2.00 μg L-1, with a detection limit of 0.015 μg L-1 for AFM1 detection. The ratiometric aptasensor also showed a linear relationship from 0.2 μg L-1 to 1.00 μg L-1, with a detection limit of 0.05 μg L-1 in natural milk after sample pretreatment, indicating the successful application of the developed ratiometric aptasensor. Our proposed strategy provides a new way to construct aptasensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Honglin Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Congcong Du
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Xinrui Huang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Hao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing 400715, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaozhu Liu
- Foshan Micro Miracles Biotechnology Company, Guangdong 528000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China.
| |
Collapse
|
2
|
Chen J, Ren B, Wang Z, Wang Q, Bi J, Sun X. Multiple Isothermal Amplification Coupled with CRISPR-Cas14a for the Naked-eye and Colorimetric Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55423-55432. [PMID: 38014527 DOI: 10.1021/acsami.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Aflatoxin B1 (AFB1) is highly toxic and challenging to remove, posing significant risks to both human health and economic development. Therefore, there is an urgent need to develop rapid, simple, and sensitive detection technologies. In this study, we introduce a naked-eye and colorimetric method based on multiple isothermal amplifications coupled with CRISPR-Cas14a and investigate its biosensing properties. This technique utilizes composite nanoprobes (MAPs) comprising magnetic nanoparticles and gold nanoparticles. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles , which triggers multiple isothermal amplification. This converts trace amounts of the toxin into a large quantity of DNA signal. Upon specific activation of the CRISPR-Cas14a complex, the MAPs are cleaved, resulting in significant changes in both color and colorimetric signal. The method demonstrates acceptable sensitivity, with a detection limit of 31.90 pg mL-1 and a wide detection range from 0.05 to 10 ng mL-1. Furthermore, the assay exhibits satisfactory specificity and high accuracy when it is applied to practical samples. Our approach offers a universal sensing platform with potential applications in food safety, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Beizhuo Ren
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
3
|
Exposure and Health Risk Assessment of Aflatoxin M 1 in Raw Milk and Cottage Cheese in Adults in Ethiopia. Foods 2023; 12:foods12040817. [PMID: 36832891 PMCID: PMC9957127 DOI: 10.3390/foods12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Aflatoxin M1 (milk toxin) found in milk is formed from the hepatic biotransformation of AFB1 (aflatoxin B1) and poses a risk to human health when consumed. The risk assessment of AFM1 exposure due to milk consumption is a valuable way to assess health risk. The objective of the present work was to determine an exposure and risk assessment of AFM1 in raw milk and cheese, and it is the first of its kind in Ethiopia. Determination of AFM1 was conducted using an enzyme-linked immunosorbent assay (ELISA). The results indicated that AFM1 was positive in all samples of milk products. The risk assessment was determined using margin of exposure (MOE), estimated daily intake (EDI), hazard index (HI), and cancer risk. The mean EDIs for raw milk and cheese consumers were 0.70 and 0.16 ng/kg bw/day, respectively. Our results showed that almost all mean MOE values were <10,000, which suggests a potential health issue. The mean HI values obtained were 3.50 and 0.79 for raw milk and cheese consumers, respectively, which indicates adverse health effects for large consumers of raw milk. For milk and cheese consumers, the mean cancer risk was 1.29 × 10-6 and 2.9 × 10-6 cases/100,000 person/year, respectively, which indicates a low risk for cancer. Therefore, a risk assessment of AFM1 in children should be investigated further as they consume more milk than adults.
Collapse
|
4
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
5
|
Bilandžić N, Varga I, Varenina I, Solomun Kolanović B, Božić Luburić Đ, Đokić M, Sedak M, Cvetnić L, Cvetnić Ž. Seasonal Occurrence of Aflatoxin M1 in Raw Milk during a Five-Year Period in Croatia: Dietary Exposure and Risk Assessment. Foods 2022; 11:1959. [PMID: 35804774 PMCID: PMC9265853 DOI: 10.3390/foods11131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study's objective was to estimate the seasonal occurrence of aflatoxin M1 (AFM1) in cow's milk between winter 2016 and winter 2022 and to assess dietary exposure and risk assessment for the adult Croatian population. In total, 5817 cow milk samples were screened for AFM1 concentrations using the enzyme immunoassay assay (ELISA). For confirmation purposes of AFM1 concentration above the European Union maximum permitted level (MRL), ultra high-performance liquid chromatography with tandem mass spectrometry was performed. In 94.7% of milk samples, AFM1 levels were below the detection limit (LOD) of the ELISA test. For 3.47% of samples, the AFM1 was between the LOD and MRL values. Only 1.87% of all samples exceeded the MRL. The mean value of elevated AFM1 in different seasons ranged between 59.2 ng/kg (autumn 2017) and 387.8 ng/kg (autumn 2021). The highest incidences of positive AFM1 were determined in autumn and winter and the maximum (6.4%) was in winter 2019/2020. The largest percentage of positive samples (69.7%) was found in central Croatia. The estimated daily intakes for positive samples ranged between 0.17 and 2.82 ng/kg body weight/day. Risk assessment indicated a high level of concern during autumn and winter, especially for consumers of large amounts of milk.
Collapse
Affiliation(s)
- Nina Bilandžić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Ines Varga
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Ivana Varenina
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Božica Solomun Kolanović
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Đurđica Božić Luburić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Maja Đokić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Marija Sedak
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Luka Cvetnić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia;
| | - Željko Cvetnić
- Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260 Križevci, Croatia;
| |
Collapse
|