1
|
Hossain MK, Davidson M, Feehan J, Matsoukas JM, Nurgali K, Apostolopoulos V. A methamphetamine vaccine using short monoamine and diamine peptide linkers and poly-mannose. Bioorg Med Chem 2024; 113:117930. [PMID: 39306972 DOI: 10.1016/j.bmc.2024.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Methamphetamine (METH) substance use disorder is a long-standing and ever-growing public health concern. Efforts to develop successful immunotherapies are ongoing with vaccines that generate strong antibody responses are an area of significant research interest. Herein, we describe the development of a METH Hapten conjugate vaccine comprised of either two short-length peptides as linkers and mannan as an immunogenic delivery carrier. Initially, Hapten 1 (with a monoamine linker) and Hapten 2 (with a diamine linker) were synthesised. Each step of the Hapten synthesis were characterized by LC-MS and purified by Flash Chromatography and the identity of the purified Haptens were confirmed by 1H NMR. Haptens were conjugated with mannan (a polymannose), and conjugation efficiency was confirmed by LC-MS, TLC, 1H NMR, and 2,4 DNPH tests. The immunogenic potential of the two conjugated vaccines were assessed in mice with a 3-dose regimen. Concentrations of anti-METH antibodies were measured by enzyme-linked immunosorbent assay. All the analytical techniques confirmed the identity of Hapten 1 and 2 during the synthetic phase. Similarly, all the analytical approaches confirmed the conjugation between the Haptens and mannan. Mouse immunogenicity studies confirmed that both vaccine candidates were immunogenic and the vaccine with the monoamine linker plus adjuvants induced the highest antibody response after the second booster.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia
| | - Jack Feehan
- Immunology Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC 3021, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - John M Matsoukas
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; NewDrug PC, Patras Science Park, Patras 26504, Greece; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta T2N4N1, Canada; Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Werribee, VIC 3030, Australia; Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Sciences, Melbourne, VIC 3021, Australia; Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Vasso Apostolopoulos
- Immunology Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC 3021, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
2
|
Domingo JL. A review of the scientific literature on experimental toxicity studies of COVID-19 vaccines, with special attention to publications in toxicology journals. Arch Toxicol 2024; 98:3603-3617. [PMID: 39225797 PMCID: PMC11489230 DOI: 10.1007/s00204-024-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Since the reports of the first cases of COVID-19, in less than 5 years, a huge number of documents regarding that disease and the coronavirus (SARS-CoV-2), responsible for the infection, have been published. The tremendous number of scientific documents covers many topics on different issues directly related to COVID-19/SARS-CoV-2. The number of articles-including reviews-reporting adverse/side effects of the approved COVID-19 vaccines is considerable. A wide range of adverse/side effects have been reported in humans after COVID-19 vaccination: thrombotic events/thrombocytopenia, myocarditis/pericarditis, cutaneous reactions, immune-mediated effects, psychiatric adverse events, systemic lupus erythematosus, reproductive toxicity, and other miscellaneous adverse effects. In contrast, information on nonclinical studies conducted to assess the potential toxicity/adverse effects of the COVID-19 vaccines in laboratory animals, is comparatively very scarce. The present review was aimed at revising the scientific literature regarding the studies in laboratory animals on the toxic/adverse effects of COVID-19 vaccines. In addition, the investigations reported in those specific toxicology journals with the highest impact factors have been examined one by one. The results of the present review indicate that most nonclinical/experimental studies on the adverse/toxic effects of the COVID-19 vaccines and/or potential candidates showed-in general terms-a good safety profile. Only in some animal studies were certain adverse effects found. However, a rather surprising result has been the limited number of available (in the databases PubMed and Scopus) nonclinical studies performed by the companies that have been the largest manufacturers of mRNA vaccines in the world. It is assumed that these studies have been conducted. However, they have not been published in scientific journals, which does not allow the judgment of the international scientific community, including toxicologists.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
3
|
Liu S, Peng Q, Fan B, Zhang G, He W, Wang C, Xie J, Song X, Yuan B, Guo R, Li J, Li B. Comparative transcriptome reveals EphA2 and c-Fos as key factors driving enhanced replication in high-passage porcine deltacoronavirus strain. Vet Microbiol 2024; 297:110211. [PMID: 39096790 DOI: 10.1016/j.vetmic.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Porcine deltacoronavirus (PDCoV), a cross-species transmissible enterovirus, frequently induces severe diarrhea and vomiting symptoms in piglets, which not only pose a significant menace to the global pig industry but also a potential public safety risk. In a previous study, we isolated a vaccine candidate, PDCoV CZ2020-P100, by passaging a parental PDCoV strain in vitro, exhibiting attenuated virulence and enhanced replication. However, the factors underlying these differences between primary and passaged strains remain unknown. In this study, we present the transcriptional landscapes of porcine kidney epithelial cells (LLC-PK1) cells infected with PDCoV CZ2020-P1 strain and P100 strain using the RNA-sequencing. We identified 105 differentially expressed genes (DEGs) in P1-infected cells and 295 DEGs in P100-infected cells. Enrichment analyses indicated that many DEGs showed enrichment in immune and inflammatory responses, with a more and higher upregulation of DEGs enriched in the P100-infected group. Notably, the DEGs were concentrated in the MAPK pathway within the P100-infected group, with significant upregulation in EphA2 and c-Fos. Knockdown of EphA2 and c-Fos reduced PDCoV infection and significantly impaired P100 replication compared to P1, suggesting a novel mechanism in which EphA2 and c-Fos are highly involved in passaged virus replication. Our findings illuminate the resemblances and distinctions in the gene expression patterns of host cells infected with P1 and P100, confirming that EphA2 and c-Fos play key roles in high-passage PDCoV replication. These results enhance our understanding of the changes in virulence and replication capacity during the process of passaging.
Collapse
Affiliation(s)
- Shiyu Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Peng
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Gege Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Wenlong He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jingyuan Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Boshui Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res 2024; 287:127837. [PMID: 39059097 DOI: 10.1016/j.micres.2024.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Klebsiella pneumoniae, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against K. pneumoniae. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by K. pneumoniae. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of K. pneumoniae vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR K. pneumoniae.
Collapse
|
5
|
Kajal, Pandey A, Mishra S. From ancient remedies to modern miracles: tracing the evolution of vaccines and their impact on public health. 3 Biotech 2024; 14:242. [PMID: 39319014 PMCID: PMC11417089 DOI: 10.1007/s13205-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
This review traces the development of vaccines from ancient times to the present, highlighting major milestones and challenges. It covers the significant impact of vaccines on public health, including the eradication of diseases such as smallpox and the reduction of others such as polio, measles, and influenza. The review provides an in-depth look at the COVID-19 vaccines, which were developed at unprecedented speeds due to the urgent global need. The study emphasizes the ongoing potential of vaccine development to address future global health challenges, demonstrating the critical role vaccines play in disease prevention and public health. Moreover, it discusses the evolution of vaccine technology, from live-attenuated and inactivated vaccines to modern recombinant and mRNA vaccines, showcasing the advancements that have enabled rapid responses to emerging infectious diseases. The review underscores the importance of continued investment in research and development, global collaboration, and the adoption of new technologies to enhance vaccine efficacy and coverage. By exploring historical and contemporary examples, the article illustrates how vaccines have transformed medical practice and public health outcomes, providing valuable insights into future directions for vaccine innovation and deployment.
Collapse
Affiliation(s)
- Kajal
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Achyut Pandey
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Shruti Mishra
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
7
|
Liu Y, Liu X, Chen W, Yu Y, Meng J, Wang J. Novel platform for engineering stable and effective vaccines against botulinum neurotoxins A, B and E. Front Immunol 2024; 15:1469919. [PMID: 39315101 PMCID: PMC11416995 DOI: 10.3389/fimmu.2024.1469919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is the most toxic protein known, capable of causing severe paralysis and posing a significant bioterrorism threat due to its extreme lethality even in minute quantities. Despite this, there are currently no FDA-approved vaccines for widespread public use. To address this urgent need, we have developed an innovative vaccine platform by fusing the neuronal binding domain of BoNT/E (Hc/E) with core-streptavidin (CS), resulting in a stable CS-Hc/E vaccine. Mice vaccinated with CS-Hc/E exhibited superior antibody titers compared to those receiving Hc/E alone. To develop a trivalent vaccine against BoNT/A, BoNT/B, and BoNT/E- key contributors to the vast majority of human botulism-we conjugated CS-Hc/E with a biotinylated atoxic chimeric protein incorporating neutralizing epitopes from BoNT/A and BoNT/B. This chimeric protein includes the binding domain of BoNT/A, along with the protease-inactive light chain and translocation domains of BoNT/B. The interaction between CS and biotin formed a stable tetrameric antigen, EBA. Vaccination with EBA in mice elicited robust antibody responses and provided complete protection against lethal doses of BoNT/A, BoNT/B, and BoNT/E. Our findings highlight EBA's potential as a stable and effective broad-spectrum vaccine against BoNT. Moreover, our technology offers a versatile platform for developing multivalent, stable vaccines targeting various biological threats by substituting the BoNT domain(s) with neutralizing epitopes from other life-threatening pathogens, thereby enhancing public health preparedness and biodefense strategies.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaoyu Liu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yunzhou Yu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
- Pharmaceutical College, Henan University, Kaifeng, China
| | - Jianghui Meng
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Viravathana P, Tepp WH, Bradshaw M, Przedpelski A, Barbieri JT, Pellett S. Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity. Int J Mol Sci 2024; 25:8955. [PMID: 39201641 PMCID: PMC11355004 DOI: 10.3390/ijms25168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recombinant mutant holotoxin BoNTs (rBoNTs) are being evaluated as possible vaccines against botulism. Previously, several rBoNTs containing 2-3 amino acid mutations in the light chain (LC) showed significant decreases in toxicity (2.5-million-fold-12.5-million-fold) versus wild-type BoNT/A1, leading to their current exclusion from the Federal Select Agent list. In this study, we added four additional mutations in the receptor-binding domain, translocation domain, and enzymatic cleft to further decrease toxicity, creating 7M rBoNT/A1. Due to poor expression in E. coli, 7M rBoNT/A1 was produced in an endogenous C. botulinum expression system. This protein had higher residual toxicity (LD50: 280 ng/mouse) than previously reported for the catalytically inactive rBoNT/A1 containing only three of the mutations (>10 µg/mouse). To investigate this discrepancy, several additional rBoNT/A1 constructs containing individual sets of amino acid substitutions from 7M rBoNT/A1 and related mutations were also endogenously produced. Similarly to endogenously produced 7M rBoNT/A1, all of the endogenously produced mutants had ~100-1000-fold greater toxicity than what was reported for their original heterologous host counterparts. A combination of mutations in multiple functional domains resulted in a greater but not multiplicative reduction in toxicity. This report demonstrates the impact of production systems on residual toxicity of genetically inactivated rBoNTs.
Collapse
Affiliation(s)
- Polrit Viravathana
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Jain SS, Singh VK, Kante RK, Jana SK, Patil RH. Current trends in development and manufacturing of higher-valent pneumococcal polysaccharide conjugate vaccine and its challenges. Biologicals 2024; 87:101784. [PMID: 39053122 DOI: 10.1016/j.biologicals.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) have been developed to protect against pneumococcal diseases caused by the more than 100 serotypes of the bacterium Streptococcus pneumoniae. PCVs primarily prevent pneumococcal infections such as sepsis, bacteraemia, meningitis, otitis media, pneumonia, septicaemia, and sinusitis among infants, adults, elderly, and immunocompromised individuals. The current available PCVs only cover a limited number of serotypes, and there is an immense need for developing higher-valent PCVs that can protect against non-vaccine serotypes to overcome challenges like serotype replacement and antibiotic resistance. The main challenges for developing higher valent PCVs are the complexity of the manufacturing process comprising polysaccharide fermentation, purification, modification or sizing of multiple polysaccharides and conjugation between polysaccharides and carrier proteins, the stability of the conjugates, and the immunogenicity of the vaccine. Different manufacturing processes have been explored to produce higher valent PCVs using different serotypes of S. pneumoniae and conjugation with different carrier proteins. The global coverage of higher valent PCVs are still low, mainly due to the high cost and limited supply of the vaccine. This review focuses on the existing and emerging manufacturing processes and challenges associated with higher-valent pneumococcal PCV development.
Collapse
Affiliation(s)
- Shital S Jain
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India; Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Vikas K Singh
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajesh Kumar Kante
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Swapan Kumar Jana
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, 411028, India.
| | - Rajendra H Patil
- Savitribai Phule Pune University, Department of Biotechnology, Pune, Maharashtra, 411007, India.
| |
Collapse
|
10
|
Hur J, Jung HK, Park SW. Development of an indirect ELISA system for diagnosis of porcine edema disease using recombinant modified Stx2e antigen. J Appl Microbiol 2024; 135:lxae021. [PMID: 38285612 DOI: 10.1093/jambio/lxae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
AIM This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.
Collapse
Affiliation(s)
- Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Ho-Kyoung Jung
- CTCVAC Inc., 106, Saengmyeonggwahakgwan-gil, Hongcheon-eup, Hongcheon-gun, Gangwon-do 25142, Republic of Korea
| | - Seung-Won Park
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-si, Gyeongsangbuk-do 38430, Republic of Korea
| |
Collapse
|
11
|
Oldrini D, Di Benedetto R, Carducci M, De Simone D, Massai L, Alfini R, Galli B, Brunelli B, Przedpelski A, Barbieri JT, Rossi O, Giannelli C, Rappuoli R, Berti F, Micoli F. Testing a Recombinant Form of Tetanus Toxoid as a Carrier Protein for Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:1770. [PMID: 38140177 PMCID: PMC10747096 DOI: 10.3390/vaccines11121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.
Collapse
Affiliation(s)
- Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Barbara Galli
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | | | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Rino Rappuoli
- Fondazione Biotecnopolo, via Fiorentina 1, 53100 Siena, Italy;
| | - Francesco Berti
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| |
Collapse
|