1
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
2
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
3
|
Souza JSM, Lisboa ABP, Santos TM, Andrade MVS, Neves VBS, Teles-Souza J, Jesus HNR, Bezerra TG, Falcão VGO, Oliveira RC, Del-Bem LE. The evolution of ADAM gene family in eukaryotes. Genomics 2020; 112:3108-3116. [PMID: 32437852 DOI: 10.1016/j.ygeno.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/17/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
The ADAM (A Disintegrin And Metalloprotease) gene family encodes proteins with adhesion and proteolytic functions. ADAM proteins are associated with diseases like cancers. Twenty ADAM genes have been identified in humans. However, little is known about the evolution of the family. We analyzed the repertoire of ADAM genes in a vast number of eukaryotic genomes to clarify the main gene copy number expansions. For the first time, we provide compelling evidence that early-branching green algae (Mamiellophyceae) have ADAM genes, suggesting that they originated in the last common ancestor of eukaryotes, before the split of plants, fungi and animals. The ADAM family expanded in early metazoans, with the most significative gene expansion happening during the first steps of vertebrate evolution. We concluded that most of mammal ADAM diversity can be explained by gene duplications in early bone fish. Our data suggest that ADAM genes were lost early in green plant evolution.
Collapse
Affiliation(s)
- J S M Souza
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - A B P Lisboa
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil; Bioinformatics program, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - T M Santos
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil; Bioinformatics program, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - M V S Andrade
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - V B S Neves
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - J Teles-Souza
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - H N R Jesus
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - T G Bezerra
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - V G O Falcão
- Biotechnology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - R C Oliveira
- Biochemistry and Molecular Biology program, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil
| | - L E Del-Bem
- Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador 40231-300, Brazil.
| |
Collapse
|
4
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
5
|
Scilabra SD, Pigoni M, Pravatá V, Schätzl T, Müller SA, Troeberg L, Lichtenthaler SF. Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor. Sci Rep 2018; 8:14697. [PMID: 30279425 PMCID: PMC6168507 DOI: 10.1038/s41598-018-32910-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1.
Collapse
Affiliation(s)
- Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Veronica Pravatá
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Tobias Schätzl
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
6
|
Luo ML, Zhou Z, Sun L, Yu L, Sun L, Liu J, Yang Z, Ran Y, Yao Y, Hu H. An ADAM12 and FAK positive feedback loop amplifies the interaction signal of tumor cells with extracellular matrix to promote esophageal cancer metastasis. Cancer Lett 2018; 422:118-128. [PMID: 29476791 DOI: 10.1016/j.canlet.2018.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers.
Collapse
Affiliation(s)
- Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China
| | - Zhuan Zhou
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lixin Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
7
|
Grötzinger J, Lorenzen I, Düsterhöft S. Molecular insights into the multilayered regulation of ADAM17: The role of the extracellular region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2088-2095. [PMID: 28571693 DOI: 10.1016/j.bbamcr.2017.05.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022]
Abstract
In contrast to many other signalling mechanisms shedding of membrane-anchored proteins is an irreversible process. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. Due to its central role in signalling the shedding activity of ADAM17 is tightly regulated, especially on the cell surface, where shedding events take place. The activity of ADAM17 can be subdivided into a catalytic activity and the actual shedding activity. Whereas the catalytic activity is constitutively present, the shedding activity has to be induced and is tightly controlled to prevent pathological situations induced by the release of its substrates. The regulation of the shedding activity of ADAM17 is multilayered and different regions of the protease are involved. Intriguingly, its extracellular domains play crucial roles in different regulatory mechanisms. We will discuss the role of these domains in the control of ADAM17 activity. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118 Kiel, Germany.
| | - Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stefan Düsterhöft
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins (Basel) 2016; 8:122. [PMID: 27120619 PMCID: PMC4848645 DOI: 10.3390/toxins8040122] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years.
Collapse
|
9
|
Leahy T, Rickard JP, Aitken RJ, de Graaf SP. D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein. Reproduction 2016; 151:491-500. [PMID: 26860122 DOI: 10.1530/rep-15-0596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/08/2016] [Indexed: 11/08/2022]
Abstract
Head-to-head agglutination of ram spermatozoa is induced by dilution in the Tyrode's capacitation medium with albumin, lactate and pyruvate (TALP) and ameliorated by the addition of the thiol d-penicillamine (PEN). To better understand the association and disassociation of ram spermatozoa, we investigated the mechanism of action of PEN in perturbing sperm agglutination. PEN acts as a chelator of heavy metals, an antioxidant and a reducing agent. Chelation is not the main mechanism of action, as the broad-spectrum chelator ethylenediaminetetraacetic acid and the copper-specific chelator bathocuproinedisulfonic acid were inferior anti-agglutination agents compared with PEN. Oxidative stress is also an unlikely mechanism of sperm association, as PEN was significantly more effective in ameliorating agglutination than the antioxidants superoxide dismutase, ascorbic acid, α-tocopherol and catalase. Only the reducing agents cysteine and DL-dithiothreitol displayed similar levels of non-agglutinated spermatozoa at 0 h compared with PEN but were less effective after 3 h of incubation (37 °C). The addition of 10 µM Cu(2+) to 250 µM PEN + TALP caused a rapid reversion of the motile sperm population from a non-agglutinated state to an agglutinated state. Other heavy metals (cobalt, iron, manganese and zinc) did not provoke such a strong response. Together, these results indicate that PEN prevents sperm association by the reduction of disulphide bonds on a sperm membrane protein that binds copper. ADAM proteins are possible candidates, as targeted inhibition of the metalloproteinase domain significantly increased the percentage of motile, non-agglutinated spermatozoa (52.0% ± 7.8) compared with TALP alone (10.6% ± 6.1).
Collapse
Affiliation(s)
- T Leahy
- Faculty of Veterinary ScienceThe University of Sydney, Camperdown, New South Wales, Australia
| | - J P Rickard
- Faculty of Veterinary ScienceThe University of Sydney, Camperdown, New South Wales, Australia
| | - R J Aitken
- Discipline of Biological SciencesFaculty of Science and IT and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - S P de Graaf
- Faculty of Veterinary ScienceThe University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
10
|
Walker LR, Hussein HAM, Akula SM. Disintegrin-like domain of glycoprotein B regulates Kaposi's sarcoma-associated herpesvirus infection of cells. J Gen Virol 2014; 95:1770-1782. [PMID: 24814923 DOI: 10.1099/vir.0.066829-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is a lytic structural protein expressed on the envelope of mature virions and on the membrane of cells supporting lytic infection. In addition to this viral glycoprotein's interaction with integrins via its RGD (Arg-Gly-Asp) motif, KSHV gB possesses a disintegrin-like domain (DLD), which binds integrins as well. Prior to this study, there has been minimal research involving the less common integrin-binding motif, DLD, of gB as it pertains to herpesvirus infection. By using phage display peptide library screening and molecular biology techniques, the DLD of KSHV gB was shown to interact specifically with non-RGD binding α9β1 integrins. Similarly, monitoring wild-type infection confirmed α9β1:DLD interactions to be critical to successful KSHV infection of human foreskin fibroblast (HFF) cells and human dermal microvascular endothelial cells (HMVEC-d) compared with 293 cells. To further demonstrate the importance of the DLD of gB in KSHV infection, two recombinant virus constructs were generated using a bacterial artificial chromosome (BAC) system harbouring the KSHV genome (BAC36): BAC36ΔD-KSHV (lacking a functionally intact DLD of gB and containing an introduced tetracycline cassette) and BAC36.T-KSHV (containing an intact DLD sequence and an introduced tetracycline cassette). Accordingly, BAC36ΔD-KSHV presented significantly lower infection rates in HFF and HMVEC-d cells compared with the comparable infection rates achieved by wild-type BAC36-KSHV and BAC36.T-KSHV. Thus, the present report has delineated a critical role for the DLD of gB in KSHV infection, which may lead to a broader knowledge regarding the sophisticated mechanisms utilized by virus-encoded structural proteins in KSHV entry and infection.
Collapse
Affiliation(s)
- Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
11
|
PALOMO IVÁN, FUENTES EDUARDO, PADRÓ TERESA, BADIMON LINA. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.). Exp Ther Med 2012; 3:577-584. [PMID: 22969932 PMCID: PMC3438755 DOI: 10.3892/etm.2012.477] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 02/03/2023] Open
Abstract
In recent years, it has been shown that platelets are not only involved in the arterial thrombotic process, but also that they play an active role in the inflammatory process of atherogenesis from the beginning. The interaction between platelets and endothelial cells occurs in two manners: activated platelets unite with intact endothelial cells, or platelets in resting adhere to activated endothelium. In this context, inhibition of the platelet function (adhesion/aggregation) could contribute to the prevention of atherothrombosis, the leading cause of cardiovascular morbidity. This can be achieved with antiplatelet agents. However, at the public health level, the level of primary prevention, a healthy diet has also been shown to exert beneficial effects. Among those elements of a healthy diet, the consumption of tomatoes (Solanum lycopersicum L.) stands out for its effect on platelet anti-aggregation activity and endothelial protection, which may be beneficial for cardiovascular health. This article briefly discusses the involvement of platelets in atherogenesis and the possible mechanisms of action provided by tomatoes for platelet anti-aggregation activity and endothelial protection.
Collapse
Affiliation(s)
- IVÁN PALOMO
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, Talca,
Chile
| | - EDUARDO FUENTES
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, Talca,
Chile
| | - TERESA PADRÓ
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau-Instituto de Investigación Biomédica Sant Pau, CiberOBENU, Instituto Carlos III, Barcelona,
Spain
| | - LINA BADIMON
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau-Instituto de Investigación Biomédica Sant Pau, CiberOBENU, Instituto Carlos III, Barcelona,
Spain
| |
Collapse
|