1
|
Guo Y, Zhu W, Yuan P, Huang X, Lu S, Cao Z, Zhao X, Wu Y. Similar neurotoxin expression profiles of traditional Chinese scorpion medicine material between juvenile and adult Mesobuthus martensii scorpions revealed by multiple strategic proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118338. [PMID: 38759762 DOI: 10.1016/j.jep.2024.118338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays. AIM OF STUDY The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials. MATERIALS AND METHODS The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis. RESULTS Based on the known 107 scorpion neurotoxins from the genomic and transcriptomic analysis of adult Mesobuthus martensii scorpions, the multiple strategic proteomics first revealed that neurotoxins exhibited more stability in telson extract than secreted venom. In the reported transcripts of scorpion neurotoxins, approximately 53%, 56%, 66% and 78% of neurotoxins were detected through undigested scorpion venom, the endopeptidase Arg-C-, Lys-C-digested telson extract, and undigested telson extract strategies, respectively. Nearly 79% of scorpion neurotoxins detected in third-instar Mesobuthus martensii scorpions represent the largest number of scorpion neurotoxins from proteomic analysis to date. Moreover, a total of 84% of scorpion neurotoxins were successfully identified at the protein level, and similar neurotoxin expression profiles in second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were first revealed by the multiple strategic proteomics. CONCLUSION These findings for the first time demonstrate the similar neurotoxin expression profiles between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicinal material, which would serve as a paradigm for further toxin analysis from different venomous animals.
Collapse
Affiliation(s)
- Yiyuan Guo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenzhuo Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sijia Lu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaolu Zhao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
ElFessi R, Khamessi O, De Waard M, Srairi-Abid N, Ghedira K, Marrouchi R, Kharrat R. Structure-Function Relationship of a Novel MTX-like Peptide (MTX1) Isolated and Characterized from the Venom of the Scorpion Maurus palmatus. Int J Mol Sci 2024; 25:10472. [PMID: 39408804 PMCID: PMC11477167 DOI: 10.3390/ijms251910472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 10/20/2024] Open
Abstract
Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the β-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Oussema Khamessi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Michel De Waard
- l’Institut du Thorax, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médical (INSERM), F-44000 Nantes, France;
| | - Najet Srairi-Abid
- LR20IPT01 Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Riadh Marrouchi
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| | - Riadh Kharrat
- Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia; (R.E.); (O.K.); (R.M.)
| |
Collapse
|
3
|
Krylov NA, Tabakmakher VM, Yureva DA, Vassilevski AA, Kuzmenkov AI. Kalium 3.0 is a comprehensive depository of natural, artificial, and labeled polypeptides acting on potassium channels. Protein Sci 2023; 32:e4776. [PMID: 37682529 PMCID: PMC10578113 DOI: 10.1002/pro.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Here, we introduce the third release of Kalium database (http://kaliumdb.org/), a manually curated comprehensive depository that accumulates data on polypeptide ligands of potassium channels. The major goal of this amplitudinous update is to summarize findings for natural polypeptide ligands of K+ channels, as well as data for the artificial derivatives of these substances obtained over the decades of exploration. We manually analyzed more than 700 original manuscripts and systematized the information on mutagenesis, production of radio- and fluorescently labeled derivatives, and the molecular pharmacology of K+ channel ligands. As a result, data on more than 1200 substances were processed and added enriching the database content fivefold. We also included the electrophysiological data obtained on the understudied and neglected K+ channels including the heteromeric and concatenated channels. We associated target channels in Kalium with corresponding entries in the official database of the International Union of Basic and Clinical Pharmacology. Kalium was supplemented with an adaptive Statistics page, where users are able to obtain actual data output. Several other improvements were introduced, such as a color code to distinguish the range of ligand activity concentrations and advanced tools for filtration and sorting. Kalium is a fully open-access database, crosslinked to other databases of interest. It can be utilized as a convenient resource containing ample up-to-date information about polypeptide ligands of K+ channels.
Collapse
Affiliation(s)
- Nikolay A. Krylov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Valentin M. Tabakmakher
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Institute of Life Sciences and BiomedicineFar Eastern Federal UniversityVladivostokRussia
| | - Daria A. Yureva
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Alexander A. Vassilevski
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Moscow Institute of Physics and Technology (State University)MoscowRussia
| | - Alexey I. Kuzmenkov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| |
Collapse
|
4
|
Titaux-Delgado G, Lopez-Giraldo AE, Carrillo E, Cofas-Vargas LF, Carranza LE, López-Vera E, García-Hernández E, Del Rio-Portilla F. Beta-KTx14.3, a scorpion toxin, blocks the human potassium channel KCNQ1. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140906. [PMID: 36918120 DOI: 10.1016/j.bbapap.2023.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Potassium channels play a key role in regulating many physiological processes, thus, alterations in their proper functioning can lead to the development of several diseases. Hence, the search for compounds capable of regulating the activity of these channels constitutes an intense field of investigation. Potassium scorpion toxins are grouped into six subfamilies (α, β, γ, κ, δ, and λ). However, experimental structures and functional analyses of the long chain β-KTx subfamily are lacking. In this study, we recombinantly produced the toxins TcoKIK and beta-KTx14.3 present in the venom of Tityus costatus and Lychas mucronatus scorpions, respectively. The 3D structures of these β-KTx toxins were determined by nuclear magnetic resonance. In both toxins, the N-terminal region is unstructured, while the C-terminal possesses the classic CSα/β motif. TcoKIK did not show any clear activity against frog Shaker and human KCNQ1 potassium channels; however, beta-KTx14.3 was able to block the KCNQ1 channel. The toxin-channel interaction mode was investigated using molecular dynamics simulations. The results showed that this toxin could form a stable network of polar-to-polar and hydrophobic interactions with KCNQ1, involving key conserved residues in both molecular partners. The discovery and characterization of a toxin capable of inhibiting KCNQ1 pave the way for the future development of novel drugs for the treatment of human diseases caused by the malfunction of this potassium channel. STATEMENT OF SIGNIFICANCE: Scorpion toxins have been shown to rarely block human KCNQ1 channels, which participate in the regulation of cardiac processes. In this study, we obtained recombinant beta-KTx14.3 and TcoKIK toxins and determined their 3D structures by nuclear magnetic resonance. Electrophysiological studies and molecular dynamics models were employed to examine the interactions between these two toxins and the human KCNQ1, which is the major driver channel of cardiac repolarization; beta-KTx14.3 was found to block effectively this channel. Our findings provide insights for the development of novel toxin-based drugs for the treatment of cardiac channelopathies involving KCNQ1-like channels.
Collapse
Affiliation(s)
- Gustavo Titaux-Delgado
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico
| | - Andrea Estefanía Lopez-Giraldo
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Luis Fernando Cofas-Vargas
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico
| | - Luis Enrique Carranza
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Enrique García-Hernández
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico.
| | - Federico Del Rio-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México 04510, Mexico.
| |
Collapse
|
5
|
Alvarado-Gonzalez C, Clement H, Ballinas-Casarrubias L, Escarcega-Avila A, Arenas-Sosa I, Lopez-Contreras KS, Zamudio F, Corzo G, Espino-Solis GP. Identification and Venom Characterization of Two Scorpions from the State of Chihuahua Mexico: Chihuahuanus coahuliae and Chihuahuanus crassimannus. Toxins (Basel) 2023; 15:416. [PMID: 37505685 PMCID: PMC10467103 DOI: 10.3390/toxins15070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Chihuahua is the largest state in Mexico. The ecosystem of this region is composed of large area of bushes, forests, and grasslands, which allows for a specific diversity of fauna; among them are interesting species of non-lethal scorpions. Most of the Chihuahuan scorpions have been previously morphologically and molecularly described; however, this manuscript could be the first to describe the composition of those venoms. This work aimed at the collection of two scorpion species from the region of Jiménez (Southwest of the State of Chihuahua), which belong to the species Chihuahuanus cohauilae and Chihuahuanus crassimanus; the two species were taxonomically and molecularly identified using a 16S DNA marker. Reverse-phase high-performance liquid chromatography (RP-HPLC) of C. coahuilae and C. crassimanus venoms allowed the identification of three fractions lethal to mice. Additionally, three fractions of each scorpion displayed an effect on house crickets. In the end, three new fractions from the venom of C. coahuilae were positive for antimicrobial activity, although none from C. crassimanus venom displayed growth inhibition. Despite being a preliminary study, the venom biochemical analysis of these two uncharacterized scorpion species opens the opportunity to find new molecules with potential applications in the biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Carolina Alvarado-Gonzalez
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
- Facultad de Ciencias Quimicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico;
| | - Herlinda Clement
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Lourdes Ballinas-Casarrubias
- Facultad de Ciencias Quimicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico;
| | - Angelica Escarcega-Avila
- Veterinary Sciences Department, Autonomous University of Ciudad Juarez, Ciudad Juarez 32310, Mexico;
| | - Ivan Arenas-Sosa
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Karla Sofia Lopez-Contreras
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
| | - Fernando Zamudio
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Gerardo Corzo
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Gerardo Pavel Espino-Solis
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
- Laboratorio Nacional de Citometría de Flujo, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico
| |
Collapse
|
6
|
van Herck IGM, Seutin V, Bentzen BH, Marrion NV, Edwards AG. Gating kinetics and pharmacological properties of small-conductance Ca 2+-activated potassium channels. Biophys J 2023; 122:1143-1157. [PMID: 36760125 PMCID: PMC10111258 DOI: 10.1016/j.bpj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Small-conductance (SK) calcium-activated potassium channels are a promising treatment target in atrial fibrillation. However, the functional properties that differentiate SK inhibitors remain poorly understood. The objective of this study was to determine how two unrelated SK channel inhibitors, apamin and AP14145, impact SK channel function in excised inside-out single-channel recordings. Surprisingly, both apamin and AP14145 exert much of their inhibition by inducing a class of very-long-lived channel closures (apamin: τc,vl = 11.8 ± 7.1 s, and AP14145: τc,vl = 10.3 ± 7.2 s), which were never observed under control conditions. Both inhibitors also induced changes to the three closed and two open durations typical of normal SK channel gating. AP14145 shifted the open duration distribution to favor longer open durations, whereas apamin did not alter open-state kinetics. AP14145 also prolonged the two shortest channel closed durations (AP14145: τc,s = 3.50 ± 0.81 ms, and τc,i = 32.0 ± 6.76 ms versus control: τc,s = 1.59 ± 0.19 ms, and τc,i = 13.5 ± 1.17 ms), thus slowing overall gating kinetics within bursts of channel activity. In contrast, apamin accelerated intraburst gating kinetics by shortening the two shortest closed durations (τc,s = 0.75 ± 0.10 ms and τc,i = 5.08 ± 0.49 ms) and inducing periods of flickery activity. Finally, AP14145 introduced a unique form of inhibition by decreasing unitary current amplitude. SK channels exhibited two clearly distinguishable amplitudes (control: Ahigh = 0.76 ± 0.03 pA, and Alow = 0.54 ± 0.03 pA). AP14145 both reduced the fraction of patches exhibiting the higher amplitude (AP14145: 4/9 patches versus control: 16/16 patches) and reduced the mean low amplitude (0.38 ± 0.03 pA). Here, we have demonstrated that both inhibitors introduce very long channel closures but that each also exhibits unique effects on other components of SK gating kinetics and unitary current. The combination of these effects is likely to be critical for understanding the functional differences of each inhibitor in the context of cyclical Ca2+-dependent channel activation in vivo.
Collapse
Affiliation(s)
- Ilsbeth G M van Herck
- Computational Physiology Department, Simula Research Laboratory, Oslo, Norway; Institute of Informatics, University of Oslo, Oslo, Norway
| | - Vincent Seutin
- Neurophysiology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Bo H Bentzen
- Acesion Pharma, Copenhagen, Denmark; Biomedical Institute, University of Copenhagen, Copenhagen, Denmark
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andrew G Edwards
- Computational Physiology Department, Simula Research Laboratory, Oslo, Norway; Department of Pharmacology, University of California, Davis, California.
| |
Collapse
|
7
|
Current Status of Peptide Medications and the Position of Active Therapeutic Peptides with Scorpion Venom Origin. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
: Peptides are highly potent, selective, and relatively safe therapeutics. Over the past two decades, natural peptides have been obtained, studied, and eventually approved by the Food and Drug Administration (FDA) due to advancements in identification, production, modification, and analytical technologies. Some peptide therapeutics has been derived from the venom gland of venomous animals, including snake, leech, lizard, snail, and scorpion. Scorpion was identified as a reservoir of important peptides with pharmaceutical properties. The scorpion uses these peptides for capturing prey and defense. However, their pharmacological properties in treating different diseases, including cardiac problems, autoimmune and infectious diseases, and diverse cancers, have been confirmed. Ion channel modifiers are the greatest components of the scorpion venom glands. Due to advances in proteomic and transcriptomic approaches, the identification of new scorpion venom peptides is steadily increasing. In this review, we tried to represent the current status of peptide medicines and describe the last peptide medications approved by FDA in 2022. Moreover, we will further explain potent peptides originating from scorpion venom, which have gone through important steps to be approved.
Collapse
|
8
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
9
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
10
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
11
|
Borges A, Graham MR, Cândido DM, Pardal PPO. Amazonian scorpions and scorpionism: integrating toxinological, clinical, and phylogenetic data to combat a human health crisis in the world's most diverse rainfores. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210028. [PMID: 34887908 PMCID: PMC8629433 DOI: 10.1590/1678-9199-jvatitd-2021-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Venom from Amazonian scorpions of the genus Tityus contains components capable of eliciting a distinct clinical, mostly neurological, syndrome. This contrasts with the mainly autonomic manifestations produced after envenomation by congeneric southern and northern South American species. Herein, we summarize Pan-Amazonian scorpionism by synthesizing available toxinological, clinical, and molecular data gathered from all affected areas in Amazonia, including Brazil, Ecuador, Colombia, Peru, Venezuela, and French Guiana. We searched multiple databases, as well as our own records, for reports of scorpion envenomations in Amazonia by confirmed Tityus spp., and compared the clinical manifestations. To help uncover clinical and venom relationships among problematic species, we explored phylogenetic relationships with a rate-calibrated analysis of mitochondrial COI data from available species. The possible existence of diversity gradients for venom toxic and immunogenic components despite the predicted strong phylogenetic association among species is underscored by discussed clinical and toxinological findings. A multicentric effort, involving all nations affected by this neglected disease, is urgently needed to offer alternatives for treating and understanding this pathology, including the preparation of neutralizing antibodies with a broad range of efficacy.
Collapse
Affiliation(s)
- Adolfo Borges
- Center for the Development of Scientific Research (CEDIC), Asunción,
Paraguay
- Laboratory of Molecular Biology of Toxins and Receptors, Institute
of Experimental Medicine, School of Medicine, Central University of Venezuela,
Caracas, Venezuela
| | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University,
Willimantic, CT, United States
| | | | - Pedro P. O. Pardal
- Laboratory of Medical Entomology and Venomous Animals, Center of
Tropical Medicine, Federal University of Pará (UFPA), Belém, PA, Brazil
| |
Collapse
|
12
|
Genomic Structure of Two Kv1.3 Channel Blockers from Scorpion Mesobuthus eupeus and Sea Anemone Stichodactyla haddoni and Construction of their Chimeric Peptide as a Novel Blocker. Biochem Genet 2021; 60:504-526. [PMID: 34286408 DOI: 10.1007/s10528-021-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Different toxins acting on Kv1.3 channel have been isolated from animal venom. MeuKTX toxin from Mesobuthus eupeus phillipsi scorpion and shtx-k toxin from Stichodactyla haddoni sea anemone have been identified as two effective Kv1.3 channel blockers. In this work, we characterized the genomic organization of both toxins. MeuKTX gene contains one intron and two exons, similar to the most scorpion toxins. There are a few reports of genomic structure of sea anemone toxins acting on Kv channels. The sequence encoding mature peptide of shtx-k was located in an exon separated by an intron from the coding exon of the propeptide and signal region. In order to make a peptide with more affinity for Kv1.3 channel and greater stability, the shtx-k/ MeuKTX chimeric peptide was designed and constructed using splicing by overlap extension-PCR (SOE-PCR) method. MeuKTX, shtx-k, and shtx-k/MeuKTX were cloned and the expression of the soluble proteins in E. coli was determined. Molecular docking studies indicated more inhibitory effect of shtx-k/MeuKTX on Kv1.3 channel compared to shtx-k and MeuKTX toxins. Key amino acids binding channel from both toxins, also involved in interaction of chimeric peptide with channel. Our results showed that the fusion peptide, shtx-k/MeuKTX could be an effective agent to target Kv1.3 channel.
Collapse
|
13
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
14
|
Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. J Mol Graph Model 2021; 107:107952. [PMID: 34119951 PMCID: PMC8174010 DOI: 10.1016/j.jmgm.2021.107952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The spike protein of SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) interacts with the ACE2 receptor in human cells and starts the infection of COVID-19 disease. Given the importance of spike protein's interaction with ACE2 receptor, we selected some antiviral peptides of venom scorpion such as HP1090, meucin-13, and meucin-18 and performed docking and molecular docking analysis of them with the RBD domain of spike protein. The results showed that meucin-18 (FFGHLFKLATKIIPSLFQ) had better interaction with the RBD domain of spike protein than other peptides. We also designed some mutations in meucin-18 and investigated their interactions with the RBD domain. The results revealed that the A9T mutation had more effective interaction with the RBD domain than the meucin-18 and was able to inhibit spike protein's interaction with ACE2 receptor. Hence, peptide “FFGHLFKLTTKIIPSLFQ” can be considered as the potential drug for the treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Karim Mahnam
- Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran; Nanotechnology Research Center, Shahrekord University, 8818634141, Shahrekord, Iran.
| | - Maryam Lotfi
- Biotechnology Department, Faculty of Agriculture, Payame Noor University, Esfahan, Iran
| | - Farzaneh Ahmadi Shapoorabadi
- Biotechnology Department, Faculty of Biological Science and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| |
Collapse
|
15
|
Sek A, Kampa RP, Kulawiak B, Szewczyk A, Bednarczyk P. Identification of the Large-Conductance Ca 2+-Regulated Potassium Channel in Mitochondria of Human Bronchial Epithelial Cells. Molecules 2021; 26:molecules26113233. [PMID: 34072205 PMCID: PMC8199365 DOI: 10.3390/molecules26113233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary β3-β4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately β3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.
Collapse
Affiliation(s)
- Aleksandra Sek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Rafal P. Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-593-8620
| |
Collapse
|
16
|
Tabakmakher VM, Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Efremov RG, Tytgat J, Vassilevski AA. Artificial Peptide Ligand of Potassium
Channel KV1.1 with High Selectivity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
18
|
Furtado AA, Daniele-Silva A, Silva-Júnior AAD, Fernandes-Pedrosa MDF. Biology, venom composition, and scorpionism induced by brazilian scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae): A mini-review. Toxicon 2020; 185:36-45. [PMID: 32585220 DOI: 10.1016/j.toxicon.2020.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Scorpionism is a serious public health problem in various regions of the world. In Brazil, a high number of accidents by scorpions have been reported. From 2014 to 2018, about 547,000 cases were recorded, resulting in 466 deaths. The scorpion Tityus stigmurus is the predominant species in the northeast of Brazil, being responsible for most scorpionism cases in this region. With the aid of the transcriptomic approach of the venom gland of this species, components as neurotoxins, antimicrobials, metal chelating peptides and hypotensins, have been identified and characterized in silico, showing different biologic activity in vitro. In addition, the neuronal, pancreatic, renal, and enzymatic effects have been demonstrated for the crude T. stigmurus venom. Therefore, the T. stigmurus scorpion venom constitutes a rich arsenal of bioactive molecules with high potential for therapeutic and biotechnological application.
Collapse
Affiliation(s)
- Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Department of Pharmaceutical Sciences, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal, 59012-570, Brazil.
| |
Collapse
|
19
|
Liu ZL, Hu JH, Jiang F, Wu YD. CRiSP: accurate structure prediction of disulfide-rich peptides with cystine-specific sequence alignment and machine learning. Bioinformatics 2020; 36:3385-3392. [PMID: 32215567 DOI: 10.1093/bioinformatics/btaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited. RESULTS We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations. AVAILABILITY AND IMPLEMENTATION The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP. CONTACT wuyd@pkusz.edu.cn or jiangfan@pku.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zi-Lin Liu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jing-Hao Hu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,NanoAI Biotech Co., Ltd, Shenzhen 518118, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
20
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
21
|
Ling C, Zhang Y, Li J, Chen W, Ling C. Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom. Curr Protein Pept Sci 2019; 20:285-295. [PMID: 29932034 DOI: 10.2174/1389203719666180622100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Traditional Chinese Medicine (TCM) has been practiced in China for thousands of years. As a complementary and alternative treatment, herbal medicines that are frequently used in the TCM are the most accepted in the Western world. However, animal materials, which are equally important in the TCM practice, are not well-known in other countries. On the other hand, the Chinese doctors had documented the toxic profiles of hundreds of animals and plants thousand years ago. Furthermore, they saw the potential benefits of these materials and used their toxic properties to treat a wide variety of diseases, such as heavy pain and cancer. Since the 50s of the last century, efforts of the Chinese government and societies to modernize TCM have achieved tremendous scientific results in both laboratory and clinic. A number of toxic proteins have been isolated and their functions identified. Although most of the literature was written in Chinese, this review provide a summary, in English, regarding our knowledge of the clinical use of the toxic proteins isolated from a plant, Tian Hua Fen, and an animal, scorpion, both of which are famous toxic prescriptions in TCM.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States
| | - Yuanhui Zhang
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Jun Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States.,Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenli Chen
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,E-institute of Internal Medicine of Traditional Chinese Medicine, Shanghai Municipal Education Commission, Shanghai 201203, China
| |
Collapse
|
22
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
23
|
Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V. Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 2019; 18:339-357. [PMID: 30728472 PMCID: PMC6499689 DOI: 10.1038/s41573-019-0013-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.
Collapse
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | | | | | - K George Chandy
- Molecular Physiology Laboratory, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vladimir Yarov-Yarovoy
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
24
|
Isolation and Characterization of Insecticidal Toxins from the Venom of the North African Scorpion, Buthacus leptochelys. Toxins (Basel) 2019; 11:toxins11040236. [PMID: 31027216 PMCID: PMC6521144 DOI: 10.3390/toxins11040236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
Various bioactive peptides have been identified in scorpion venom, but there are many scorpion species whose venom has not been investigated. In this study, we characterized venom components of the North African scorpion, Buthacus leptochelys, by mass spectrometric analysis and evaluated their insect toxicity. This is the first report of chemical and biological characterization of the B. leptochelys venom. LC/MS analysis detected at least 148 components in the venom. We isolated four peptides that show insect toxicity (Bl-1, Bl-2, Bl-3, and Bl-4) through bioassay-guided HPLC fractionation. These toxins were found to be similar to scorpion α- and β-toxins based on their N-terminal sequences. Among them, the complete primary structure of Bl-1 was determined by combination of Edman degradation and MS/MS analysis. Bl-1 is composed of 67 amino acid residues and crosslinked with four disulfide bonds. Since Bl-1 shares high sequence similarity with α-like toxins, it is likely that it acts on Na+ channels of both insects and mammals.
Collapse
|
25
|
Vasseur L, Chavanieu A, Combemale S, Caumes C, Béroud R, De Waard M, Ducrot P, Boutin JA, Ferry G, Cens T. Fluorescent analogues of BeKm-1 with high and specific activity against the hERG channel. Toxicon X 2019; 2:100010. [PMID: 32550567 PMCID: PMC7285999 DOI: 10.1016/j.toxcx.2019.100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Peptidic toxins that target specifically mammalian channels and receptors can be found in the venom of animals. These toxins are rarely used directly as tools for biochemical experiments, and need to be modified via the attachment of chemical groups (e.g., radioactive or fluorescent moieties). Ideally, such modifications should maintain the toxin specificity and affinity for its target. With the goal of obtaining fluorescent derivatives of BeKm-1, a toxin from the scorpion species Buthus eupeus that selectively inhibits the voltage-gated potassium ion channel hERG, we produced four active analogues using a model of BeKm-1 docking to the outer mouth of the channel. In these BeKm-1 analogues, the natural peptide was linked to the fluorescent cyanine 5 (Cy5) probe via four different linkers at Arg1 or Arg/Lys27. All analogues retained their specificity towards the hERG channel in electrophysiological experiments but displayed a lesser affinity. These results validate our strategy for designing toxin analogues and demonstrate that different chemical groups can be attached to different residues of BeKm-1. Recent structural data on the hERG ion channel allow modeling BeKm-1 docking to the outer mouth of the channel. The docking model identified solvent-exposed residues in BeKm-1 sequence for the attachment of chemical groups. Four BeKm-1 analogues were produced by labeling with a fluorescent dye the end of four different linkers. Electrophysiological recordings demonstrated that BeKm-1 analogues retain the toxin affinity and specificity towards hERG.
Collapse
Affiliation(s)
- Lucie Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, Saint-Egrève, France.,Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx « Ion Channels, Science & Therapeutics », Nantes, France
| | - Pierre Ducrot
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int J Mol Sci 2019; 20:ijms20030729. [PMID: 30744067 PMCID: PMC6387193 DOI: 10.3390/ijms20030729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
BmK AEP, a scorpion peptide purified form the venom of Buthus martensii Karsch, has been reported to display anti-epileptic activity. Voltage-gated sodium channels (VGSCs) are responsible for the rising phase of action potentials (APs) in neurons and, therefore, controlling neuronal excitability. To elucidate the potential molecular mechanisms responsible for its anti-epileptic activity, we examined the influence of BmK AEP on AP firing in cortical neurons and how BmK AEP influences brain subtypes of VGSCs (Nav1.1–1.3 and Nav1.6). BmK AEP concentration-dependently suppresses neuronal excitability (AP firing) in primary cultured cortical neurons. Consistent with its inhibitory effect on AP generation, BmK AEP inhibits Na+ peak current in cortical neurons with an IC50 value of 2.12 µM by shifting the half-maximal voltage of activation of VGSC to hyperpolarized direction by ~7.83 mV without affecting the steady-state inactivation. Similar to its action on Na+ currents in cortical neurons, BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.1, Nav1.3, and Nav1.6, which were heterologously expressed in HEK-293 cells, with IC50 values of 3.20, 1.46, and 0.39 µM with maximum inhibition of 82%, 56%, and 93%, respectively. BmK AEP shifts the voltage-dependent activation in the hyperpolarized direction by ~15.60 mV, ~9.97 mV, and ~6.73 mV in Nav1.1, Nav1.3, and Nav1.6, respectively, with minimal effect on steady-state inactivation. In contrast, BmK AEP minimally suppresses Nav1.2 currents (~15%) but delays the inactivation of the channel with an IC50 value of 1.69 µM. Considered together, these data demonstrate that BmK AEP is a relatively selective Nav1.6 gating modifier which distinctly affects the gating of brain subtypes of VGSCs.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Ombati R, Luo L, Yang S, Lai R. Centipede envenomation: Clinical importance and the underlying molecular mechanisms. Toxicon 2018; 154:60-68. [DOI: 10.1016/j.toxicon.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/21/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
|
28
|
Joshi BP, Wang TD. Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2015237. [PMID: 30224903 PMCID: PMC6129851 DOI: 10.1155/2018/2015237] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/27/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging strategy for in vivo visualization of cancer over time based on biological mechanisms of disease activity. Optical imaging methods offer a number of advantages for real-time cancer detection, particularly in the epithelium of hollow organs and ducts, by using a broad spectral range of light that spans from visible to near-infrared. Targeted ligands are being developed for improved molecular specificity. These platforms include small molecule, peptide, affibody, activatable probes, lectin, and antibody. Fluorescence labeling is used to provide high image contrast. This emerging methodology is clinically useful for early cancer detection by identifying and localizing suspicious lesions that may not otherwise be seen and serves as a guide for tissue biopsy and surgical resection. Visualizing molecular expression patterns may also be useful to determine the best choice of therapy and to monitor efficacy. A number of these imaging agents are overcoming key challenges for clinical translation and are being validated in vivo for a wide range of human cancers.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Kuzmenkov AI, Vassilevski AA. Labelled animal toxins as selective molecular markers of ion channels: Applications in neurobiology and beyond. Neurosci Lett 2018; 679:15-23. [DOI: 10.1016/j.neulet.2017.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
|
30
|
Ghosh A, Roy R, Nandi M, Mukhopadhyay A. Scorpion Venom-Toxins that Aid in Drug Development: A Review. Int J Pept Res Ther 2018; 25:27-37. [PMID: 32214927 PMCID: PMC7088386 DOI: 10.1007/s10989-018-9721-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/01/2022]
Abstract
Scorpion venom components have multifaceted orientation against bacterial, viral, fungal infections and other neuronal disorders. They can modulate the ion channels (K+, Na+, Cl−, Ca2+) of our body and this concept has been hypothesized in formulating pharmaceuticals. The triumphant achievement of these venom components as formulated anticancer agent in Phase I and Phase II clinical trials allure researchers to excavate beneficial venom components prohibiting DNA replication in malignant tumor cells. This review brings forth the achievements of Science and Technology in classifying the venom components as therapeutics and further application in drug product development.
Collapse
Affiliation(s)
- Arijit Ghosh
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Rini Roy
- 1Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India
| | - Monoswini Nandi
- 2Department of Molecular Biology and Biotechnology, Kalyani University, University Road, Near Kalyani Ghoshpara Railway Station, District Nadia, Kalyani, West Bengal 741235 India
| | - Ashis Mukhopadhyay
- 3Department of Hemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16 A Park Lane, Kolkata, 700016 India.,4Netaji Subhas Chandra Bose Cancer Research Institute, Park Street, Kolkata, West Bengal 700016 India
| |
Collapse
|
31
|
Baradaran M, Jalali A, Naderi-Soorki M, Jokar M, Galehdari H. First Transcriptome Analysis of Iranian Scorpion, Mesobuthus Eupeus Venom Gland. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1488-1502. [PMID: 30568706 PMCID: PMC6269579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Scorpions are generally an important source of bioactive components, including toxins and other small peptides as attractive molecules for new drug development. Mesobuthus eupeus, from medically important and widely distributed Buthidae family, is the most abundant species in Iran. Researchers are interesting on the gland of this scorpion due to the complexity of its venom. Here, we have analyzed the transcriptome based on expressed sequence tag (EST) database from the venom tissue of Iranian M. eupeus by constructing a cDNA library and subsequent Sanger sequencing of obtained inserts. Sixty-three unique transcripts were identified, which were grouped in different categories, including Toxins (44 transcripts), Cell Proteins (9 transcripts), Antimicrobial Peptides (4 transcripts) and Unknown Peptides (3 transcripts). The analysis of the ESTs revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new precursor provides evidence to validate the first CaTxs from M. eupeus. The results are exploration of the diversity of precursors expressed of Iranian M. eupeus venom gland. We further described comparative analysis of venom components of Iranian M. eupeus with other sibling species.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amir Jalali
- Department of Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Naderi-Soorki
- Genetics Department, School of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran. ,Corresponding author: E-mail: ;
| | - Mahmoud Jokar
- Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Hamid Galehdari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding author: E-mail: ;
| |
Collapse
|
32
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
33
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
34
|
Nekrasova OV, Volyntseva AD, Kudryashova KS, Novoseletsky VN, Lyapina EA, Illarionova AV, Yakimov SA, Korolkova YV, Shaitan KV, Kirpichnikov MP, Feofanov AV. Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel. J Neuroimmune Pharmacol 2016; 12:260-276. [PMID: 27640211 DOI: 10.1007/s11481-016-9710-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/09/2016] [Indexed: 11/25/2022]
Abstract
Potassium voltage-gated Kv1.6 channel, which is distributed primarily in neurons of central and peripheral nervous systems, is of significant physiological importance. To date, several high-affinity Kv1.6-channel blockers are known, but the lack of selective ones among them hampers the studies of tissue localization and functioning of Kv1.6 channels. Here we present an approach to advanced understanding of interactions of peptide toxin blockers with a Kv1.6 pore. It combines molecular modeling studies and an application of a new bioengineering system based on a KcsA-Kv1.6 hybrid channel for the quantitative fluorescent analysis of blocker-channel interactions. Using this system we demonstrate that peptide toxins agitoxin 2, kaliotoxin1 and OSK1 have similar high affinity to the extracellular vestibule of the K+-conducting pore of Kv1.6, hetlaxin is a low-affinity ligand, whereas margatoxin and scyllatoxin do not bind to Kv1.6 pore. Binding of toxins to Kv1.6 pore has considerable inverse dependence on the ionic strength. Model structures of KcsA-Kv1.6 and Kv1.6 complexes with agitoxin 2, kaliotoxin 1 and OSK1 were obtained using homology modeling and molecular dynamics simulation. Interaction interfaces, which are formed by 15-19 toxin residues and 10 channel residues, are described and compared. Specific sites of Kv1.6 pore recognition are identified for targeting of peptide blockers. Analysis of interactions between agitoxin 2 derivatives with point mutations (S7K, S11G, L19S, R31G) and KcsA-Kv1.6 confirms reliability of the calculated complex structure.
Collapse
Affiliation(s)
- O V Nekrasova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - A D Volyntseva
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - K S Kudryashova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - V N Novoseletsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - E A Lyapina
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - A V Illarionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - S A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - K V Shaitan
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - M P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - A V Feofanov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| |
Collapse
|
35
|
He Y, Zou X, Li X, Chen J, Jin L, Zhang F, Yu B, Cao Z. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca 2+ overloading. Arch Toxicol 2016; 91:935-948. [PMID: 27318804 DOI: 10.1007/s00204-016-1755-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na+ currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC50 = 0.68 µM) and produced massive intracellular Ca2+ overloading (EC50 = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca2+ response of BmK NT1 was primary through extracellular Ca2+ influx since reducing the extracellular Ca2+ concentration suppressed the Ca2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na+/Ca2+ exchangers. Nifedipine, an L-type Ca2+ channel inhibitor, slightly suppressed both Ca2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca2+ overloading through both NMDA receptor- and Na+/Ca2+ exchanger-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Yuwei He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,School of Biological Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China. .,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
ElFessi-Magouri R, Peigneur S, Khamessi O, Srairi-Abid N, ElAyeb M, Mille BG, Cuypers E, Tytgat J, Kharrat R. Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel α-KTx subfamily. Peptides 2016; 80:4-8. [PMID: 26079392 DOI: 10.1016/j.peptides.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023]
Abstract
Kbot55 is a 39 amino acid peptide isolated from the venom of the Tunisian scorpion Buthus occitanus tunetanus. This peptide is cross-linked by 3 disulfide bridges and has a molecular mass of 4128.65Da. Kbot55 is very low represented in the venom and thus represents a challenge for biochemical characterization. In this study, Kbot55 has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes. It was found that Kbot55 targets voltage-gated potassium channels with high affinity. Kbot55 shows very low amino acid identity with other scorpion potassium toxins and therefore was considered a bona fide novel type of scorpion toxin. Sequence alignment analysis indicated that Kbot55 is the first representative of the new α-Ktx31 subfamily and therefore was classified as α-Ktx31.1.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Steve Peigneur
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Oussema Khamessi
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | - Bea Garcia Mille
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Eva Cuypers
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia.
| |
Collapse
|
37
|
Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:51-90. [PMID: 27238261 DOI: 10.1016/bs.irn.2016.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large-conductance, Ca(2+)- and voltage-activated K(+) (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1-β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings.
Collapse
|
38
|
Ojeda PG, Wang CK, Craik DJ. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers 2016; 106:25-36. [DOI: 10.1002/bip.22748] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Paola G. Ojeda
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
39
|
Kuzmenkov AI, Grishin EV, Vassilevski AA. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. BIOCHEMISTRY (MOSCOW) 2016; 80:1764-99. [DOI: 10.1134/s0006297915130118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Lima PC, Bordon KCF, Pucca MB, Cerni FA, Zoccal KF, Faccioli LH, Arantes EC. Partial purification and functional characterization of Ts19 Frag-I, a novel toxin from Tityus serrulatus scorpion venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:49. [PMID: 26628901 PMCID: PMC4666072 DOI: 10.1186/s40409-015-0051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The yellow scorpion Tityus serrulatus (Ts) is responsible for the highest number of accidents and the most severe scorpion envenoming in Brazil. Although its venom has been studied since the 1950s, it presents a number of orphan peptides that have not been studied so far. The objective of our research was to isolate and identify the components present in the fractions VIIIA and VIIIB of Ts venom, in order to search for a novel toxin. The major isolated toxins were further investigated for macrophage modulation. METHODS The fractions VIIIA and VIIIB, obtained from Ts venom cation exchange chromatography, were rechromatographed on a C18 column (4.6 × 250 mm) followed by a reversed-phase chromatography using another C18 column (2.1 × 250 mm). The main eluted peaks were analyzed by MALDI-TOF and Edman's degradation and tested on macrophages. RESULTS The previously described toxins Ts2, Ts3-KS, Ts4, Ts8, Ts8 propeptide, Ts19 Frag-II and the novel peptide Ts19 Frag-I were isolated from the fractions VIIIA and VIIIB. Ts19 Frag-I, presenting 58 amino acid residues, a mass of 6,575 Da and a theoretical pI of 8.57, shares high sequence identity with potassium channel toxins (KTx). The toxins Ts4, Ts3-KS and the partially purified Ts19 Frag-I did not produce cytotoxic effects on macrophage murine cells line (J774.1). On the other hand, Ts19 Frag-I induced the release of nitric oxide (NO) by macrophages, while Ts4 and Ts3-KS did not affect the NO production at the tested concentration (50 μg/mL). At the same concentration, Ts19 Frag-I and Ts3-KS increased the production of interleukin-6 (IL-6). Ts19 Frag-I and Ts4 did not induce the release of IL-10, IL-1β or tumor necrosis factor-α by macrophage cells using the tested concentration (50 μg/mL). CONCLUSIONS We partially purified and determined the complete sequence and chemical/physical parameters of a new β-KTx, denominated Ts19 Frag-I. The toxins Ts4, Ts3-KS and Ts19 Frag-I showed no cytotoxicity toward macrophages and induced IL-6 release. Ts19 Frag-I also induced the release of NO, suggesting a pro-inflammatory activity.
Collapse
Affiliation(s)
- Priscila C Lima
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Karina F Zoccal
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil.,Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
41
|
Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel) 2015; 7:4832-51. [PMID: 26593947 PMCID: PMC4663536 DOI: 10.3390/toxins7114832] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022] Open
Abstract
Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.
Collapse
Affiliation(s)
- Md Abdul Hakim
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- Joint Laboratory of Natural Peptide, University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
42
|
Nikouee A, Khabiri M, Cwiklik L. Scorpion toxins prefer salt solutions. J Mol Model 2015; 21:287. [PMID: 26475740 DOI: 10.1007/s00894-015-2822-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and-like other proteins-an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213-9223, 1996; Baldwin Biophys J 71(4):2056-2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440-15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na(+) and K(+), was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals.
Collapse
Affiliation(s)
- Azadeh Nikouee
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Morteza Khabiri
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lukasz Cwiklik
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223, Prague 8, Czech Republic
| |
Collapse
|
43
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
44
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
45
|
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae
and determination of its disulfide bonding pattern. J Pept Sci 2015; 21:636-43. [DOI: 10.1002/psc.2778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
46
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
47
|
Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 2014; 22:427-43. [PMID: 25027630 PMCID: PMC5472047 DOI: 10.1016/j.intimp.2014.06.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
Abstract
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.
Collapse
Affiliation(s)
- Lisheng Ge
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Neil T Hoa
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Zechariah Wilson
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | - Xiao-Tang Kong
- Department of Neuro-Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA; Pathology and Laboratory Medicine, Med Sci I, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
48
|
Subramanyam P, Colecraft HM. Ion channel engineering: perspectives and strategies. J Mol Biol 2014; 427:190-204. [PMID: 25205552 DOI: 10.1016/j.jmb.2014.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023]
Abstract
Ion channels facilitate the passive movement of ions down an electrochemical gradient and across lipid bilayers in cells. This phenomenon is essential for life and underlies many critical homeostatic processes in cells. Ion channels are diverse and differ with respect to how they open and close (gating) and to their ionic conductance/selectivity (permeation). Fundamental understanding of ion channel structure-function mechanisms, their physiological roles, how their dysfunction leads to disease, their utility as biosensors, and development of novel molecules to modulate their activity are important and active research frontiers. In this review, we focus on ion channel engineering approaches that have been applied to investigate these aspects of ion channel function, with a major emphasis on voltage-gated ion channels.
Collapse
Affiliation(s)
- Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, Columbia University, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, NY, 10032, USA.
| |
Collapse
|
49
|
Thapa P, Espiritu MJ, Cabalteja C, Bingham JP. The Emergence of Cyclic Peptides: The Potential of Bioengineered Peptide Drugs. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9421-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Kamachi S, Nagao J, Miyashita M, Nakagawa Y, Miyagawa H, Tada T. Crystallization and preliminary X-ray diffraction studies of La1 from Liocheles australasiae. Acta Crystallogr F Struct Biol Commun 2014; 70:915-7. [PMID: 25005088 PMCID: PMC4089531 DOI: 10.1107/s2053230x14010589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
A novel scorpion venom peptide, La1 from Liocheles australasiae, with a molecular weight of 7.8 kDa, is presumed to possess a single von Willebrand factor type C (VWC) domain, a common protein module, based on the position of eight Cys residues in its sequence. The biological function of La1 is still unknown. Deciphering its three-dimensional structure will be helpful in understanding its biological function. La1 was crystallized by the sitting-drop vapour-diffusion method using magnesium sulfate as a precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=63.0, b=30.2, c=32.3 Å, β=108.5°, and diffracted to 1.9 Å resolution. The calculated VM based on one molecule per asymmetric unit was 1.87 Å3 Da(-1). The solvent content was 34.1%.
Collapse
Affiliation(s)
- Saori Kamachi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Junya Nagao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiji Tada
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|