1
|
He X, Fan K, Gong H, Huang M, Zeng Q, Huang J, Peng X, Lai P, Lu Y, Wang H. Mechanism study of cross presentation of exogenous antigen induced by cholera toxin-like chimeric protein. Vaccine 2024; 42:1549-1560. [PMID: 38320931 DOI: 10.1016/j.vaccine.2024.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.
Collapse
Affiliation(s)
- Xianying He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Kaixiang Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Haiyan Gong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Mingqin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Qingsong Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Junjie Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Ximing Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Peifang Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China.
| |
Collapse
|
2
|
Soto LF, Romaní AC, Jiménez-Avalos G, Silva Y, Ordinola-Ramirez CM, Lopez Lapa RM, Requena D. Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens. Front Immunol 2022; 13:942907. [PMID: 36110855 PMCID: PMC9469472 DOI: 10.3389/fimmu.2022.942907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium perfringens is a dangerous bacterium and known biological warfare weapon associated with several diseases, whose lethal toxins can produce necrosis in humans. However, there is no safe and fully effective vaccine against C. perfringens for humans yet. To address this problem, we computationally screened its whole proteome, identifying highly immunogenic proteins, domains, and epitopes. First, we identified that the proteins with the highest epitope density are Collagenase A, Exo-alpha-sialidase, alpha n-acetylglucosaminidase and hyaluronoglucosaminidase, representing potential recombinant vaccine candidates. Second, we further explored the toxins, finding that the non-toxic domain of Perfringolysin O is enriched in CTL and HTL epitopes. This domain could be used as a potential sub-unit vaccine to combat gas gangrene. And third, we designed a multi-epitope protein containing 24 HTL-epitopes and 34 CTL-epitopes from extracellular regions of transmembrane proteins. Also, we analyzed the structural properties of this novel protein using molecular dynamics. Altogether, we are presenting a thorough immunoinformatic exploration of the whole proteome of C. perfringens, as well as promising whole-protein, domain-based and multi-epitope vaccine candidates. These can be evaluated in preclinical trials to assess their immunogenicity and protection against C. perfringens infection.
Collapse
Affiliation(s)
- Luis F. Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ana C. Romaní
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Gabriel Jiménez-Avalos
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Yshoner Silva
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Carla M. Ordinola-Ramirez
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Rainer M. Lopez Lapa
- Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Instituto de Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, United States
- *Correspondence: David Requena,
| |
Collapse
|
3
|
Sun P, Li X, Pan C, Liu Z, Wu J, Wang H, Zhu L. A Short Peptide of Autotransporter Ata Is a Promising Protective Antigen for Vaccination Against Acinetobacter baumannii. Front Immunol 2022; 13:884555. [PMID: 35493470 PMCID: PMC9043751 DOI: 10.3389/fimmu.2022.884555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
With the emergence of multidrug-resistant strains, Acinetobacter baumannii infection is becoming a thorny health problem in hospitals. However, there are no licensed vaccines against A. baumannii. Acinetobacter trimeric autotransporter (Ata) is an important known virulence factor located on the outer membrane of bacteria. Herein, we carried out a series of experiments to test the immunogenicity of a short C-terminal extracellular region of Ata (Ataα, only containing 39 amino acids) in a murine model. The short peptide Ataα was fused with the cholera toxin B subunit (CTB), which has been reported to have immunoadjuvant activity. The fusion protein showed no inflammation and organ damages, and have the ability to elicit both Th1 and Th2 immune responses in mice. The bactericidal activities against A. baumannii and prophylactic effects of the fusion protein were further evidenced by a significant reduction in the bacterial load in the organs and blood. In addition, the candidate vaccine could provide broad protection against lethal challenges with a variety of A. baumannii strains. Moreover, when CpG was added on the basis of aluminum adjuvant, the immune response, especially cellular immunity, could be further strengthened. Overall, these results revealed that the Ataα is a promising vaccine target against A. baumannii infection.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Zhicheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. J Control Release 2022; 343:551-563. [DOI: 10.1016/j.jconrel.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
5
|
PENG X, LI X, PENG G, FENG L, JIANG Y, LUO Y. Recombinant unpurified rETX H106P/ CTB-rETX Y196E protects rabbits against Clostridium perfringens epsilon toxin. J Vet Med Sci 2021; 83:441-446. [PMID: 33551442 PMCID: PMC8025428 DOI: 10.1292/jvms.20-0385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, has been touted as a potential biological weapon and is known to induce fatal enterotoxemia in a variety of livestock animals. For the efficient production of recombinant proteins with the objective of investigating the effects of different recombinant vaccines against ETX, a bicistronic design (BCD) expression system including the ETX coding sequence with mutation of amino acid 106 from Histidine to Proline (ETXH106P) in the first cistron, followed by Cholera Toxin B (CTB) linked with the ETX coding sequence with mutation of amino acid 196 from Tyrosine to Glutamic acid (ETXY196E) in the second cistron, was generated under the control of a single promoter. Rabbits were immunized twice with five inactivated recombinant Escherichia coli (E. coli) vaccines containing 100 µg/ml of the recombinant mutant rETXH106P/CTB-rETXY196E proteins mixed with different adjuvants. Apart from rETXH106P/CTB-rETXY196E-IMS1313-vaccinated rabbits, the neutralizing antibody titers of rETXH106P/CTB-rETXY196E-vaccinated rabbits were higher after the initial immunization than those administered the ETX toxoid or current commercial vaccines. rETXH106P/CTB-rETXY196E mixed with ISA201 induced the highest neutralizing antibody titer of 120 after the first immunization, suggesting that 0.1 ml of pooled sera could neutralize 120× mouse LD100 (100% lethal dose) of ETX. Following the second vaccination, rETXH106P/CTB-rETXY196E mixed with ISA201 or GR208 produced the highest neutralizing titer of 800. Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD100 of ETX challenge. These results show that these novel recombinant proteins can induce a strong immune response and represent potential targets for the development of a commercial vaccine against the C. perfringens epsilon toxin.
Collapse
Affiliation(s)
- Xiaobing PENG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Xuni LI
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Guorui PENG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Lifang FENG
- Beijing Zhonghai Biotech Co., Ltd., No. 8 Zhongguancun South Street, Beijing 100-081, China
| | - Yuwen JIANG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Yufeng LUO
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| |
Collapse
|
6
|
Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. Toxins (Basel) 2021; 13:toxins13010036. [PMID: 33418946 PMCID: PMC7825107 DOI: 10.3390/toxins13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few decades, proteins and peptides have become increasingly more common as FDA-approved drugs, despite their inefficient delivery due to their inability to cross the plasma membrane. In this context, bacterial two-component systems, termed AB toxins, use various protein-based membrane translocation mechanisms to deliver toxins into cells, and these mechanisms could provide new insights into the development of bio-based drug delivery systems. These toxins have great potential as therapies both because of their intrinsic properties as well as the modular characteristics of both subunits, which make them highly amenable to conjugation with various drug classes. This review focuses on the therapeutical approaches involving the internalization mechanisms of three representative AB toxins: botulinum toxin type A, anthrax toxin, and cholera toxin. We showcase several specific examples of the use of these toxins to develop new therapeutic strategies for numerous diseases and explain what makes these toxins promising tools in the development of drugs and drug delivery systems.
Collapse
|
7
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
8
|
Peng X, Peng G, Li X, Feng L, Dong L, Jiang Y. Immunization of rabbits with recombinant Clostridium perfringens alpha toxins CPA-C and CTB-CPA-C in a bicistronic design expression system confers strong protection against challenge. Protein Expr Purif 2019; 167:105550. [PMID: 31811913 DOI: 10.1016/j.pep.2019.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The Clostridium perfringens alpha toxin (CPA), encoded by the plc gene, is the causative pathogen of gas gangrene, which is a lethal infection. In this study, we used an E. coli system for the efficient production of recombinant proteins and developed a bicistronic design (BCD) expression construct consisting of two copies of the C-terminal (247-370) domain of the alpha toxin (CPA-C) in the first cistron, followed by Cholera Toxin B (CTB) linked with another two copies of CPA-C in the second cistron that is controlled by a single promoter. Rabbits were immunized twice with purified proteins (rCPA-C rCTB-CPA-C) produced in the BCD expression system, with an inactivated recombinant E. coli vaccine (RE), C. perfringens formaldehyde-inactivated alpha toxoid (FA-CPA) and C. perfringensl-lysine/formaldehyde alpha toxoid (LF-CPA) vaccines. Following the second vaccination, 0.1 mL of pooled sera of the RE-vaccinated rabbits could neutralize 12× mouse LD100 (100% lethal dose) of CPA, while that of the rCPA-C rCTB-CPA-C-vaccinated rabbits could neutralize 6× mouse LD100 of CPA. Antibody titers against CPA were also assessed by ELISA, reaching titers as high as 1:2048000 in the RE group; this was significantly higher compared to the C. perfringens alpha toxoid vaccinated groups (FA-CPA and LF-CPA). Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD100 of CPA challenge. These results demonstrate that the recombinant proteins are able to induce a strong immune responses, indicating that they may be potentially utilized as targets for novel vaccines specifically against the C. perfringens alpha toxin.
Collapse
Affiliation(s)
- Xiaobing Peng
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China.
| | - Guorui Peng
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Xuni Li
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Lifang Feng
- Good Clinical Practice Office, Beijing Zhonghai Biotech Co., Ltd, Beijing, China
| | - Lingying Dong
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuwen Jiang
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
9
|
Adjuvant Allergen Fusion Proteins as Novel Tools for the Treatment of Type I Allergies. Arch Immunol Ther Exp (Warsz) 2019; 67:273-293. [DOI: 10.1007/s00005-019-00551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
10
|
Misra N, Wines TF, Knopp CL, Hermann R, Bond L, Mitchell B, McGuire MA, Tinker JK. Immunogenicity of a Staphylococcus aureus-cholera toxin A 2/B vaccine for bovine mastitis. Vaccine 2018; 36:3513-3521. [PMID: 29739718 DOI: 10.1016/j.vaccine.2018.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus causes a chronic, contagious disease of the udder, or mastitis, in dairy cows. This infection is often refractory to antibiotic treatment, and has a significant economic impact on milk production worldwide. An effective vaccine to prevent S. aureus mastitis would improve animal health, reduce antibiotic dependence and inform human vaccine approaches. The iron-regulated surface determinant A (IsdA) and clumping factor A (ClfA) are conserved S. aureus extracellular-matrix adhesins and target vaccine antigens. Here we report the results of two bovine immunogenicity trials using purified IsdA and ClfA-cholera toxin A2/B chimeras (IsdA-CTA2/B and ClfA-CTA2/B). Cows were intranasally inoculated with IsdA-CTA2/B + ClfA-CTA2/B at dry off and followed for 70 days. Trial 1 utilized three groups with one or two booster doses at a total concentration of 600 or 900 μg. Trial 2 utilized two groups with one booster at a total concentration of 1200 μg. Humoral immune responses in serum and milk were examined by ELISA. Responses in serum were significant between groups and provide evidence of antigen-specific IgG induction after vaccination in both trials. Cellular proliferation was detected by flow cytometry using antigen-stimulated PBMCs from day 60 of Trial 2 and revealed an increase in CD4+ T cells from vaccinated cows. IsdA and ClfA stimulation induced IL-4 expression, but not IFN-γ or IL-17, in PBMCs from day 60 as determined by cytokine expression analysis. Opsonophagocytosis of S. aureus confirmed the functional in vitro activity of anti-IsdA antibodies from Trial 2 serum and milk. The vaccine was well tolerated and safe, and results support the potential of mucosally-delivered CTA2/B chimeras to protect cows from mastitis caused by S. aureus.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA
| | - T F Wines
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - C L Knopp
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - R Hermann
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA
| | - L Bond
- Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - B Mitchell
- DairyTeam Nutrition and Veterinary Consulting, Boise, ID, USA
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - J K Tinker
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
11
|
Lin W, Zheng X, Wang H, Yu L, Zhou X, Sun Y, Zhao S, Du Z, Zhang K. Purification and characterization of a novel cell-penetrating carrier similar to cholera toxin chimeric protein. Protein Expr Purif 2017; 129:128-134. [DOI: 10.1016/j.pep.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 12/01/2022]
|
12
|
Asadi Karam MR, Habibi M, Bouzari S. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens. Biologicals 2016; 44:378-86. [PMID: 27461240 DOI: 10.1016/j.biologicals.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/16/2023] Open
Abstract
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections in human. Antibiotics are common therapy for UTIs, but increase in antibiotic resistance will complicate future treatment of the infections, making the development of an efficacious UTI vaccine more urgent. In this study, we have evaluated intranasally the efficacy of FliC and FimH antigens of UPEC in different vaccine formulations with and without cholera toxin (CT) adjuvant. Immunization of mice with FliC in fusion form or admixed with FimH elicited higher levels of serum, mucosal and cell-mediated responses than FimH alone. Furthermore, the use of CT in synergism with FliC resulted in the stimulation of a mixed Th1 and Th2 responses against FimH and FliC as antigen and maintained the antibody responses for at least 24 weeks following the last vaccine dose. Of the vaccine preparations, Fusion, Fusion + CT, and FimH admixed with FliC and CT showed the best protection against UPEC. These data indicated that intranasal administration of a FliC and CT adjuvant-based vaccine has the potential to provide protective responses against UPEC strains.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|