1
|
Matsumura T, Kitamura M, Amatsu S, Yamaguchi A, Kobayashi N, Yutani M, Fujinaga Y. Neutralization mechanism of human monoclonal antibodies against type B botulinum neurotoxin. Microbiol Immunol 2024; 68:348-358. [PMID: 39239735 DOI: 10.1111/1348-0421.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Botulism is a deadly neuroparalytic condition caused by the botulinum neurotoxin (BoNT) produced by Clostridium botulinum and related species. Toxin-neutralizing antibodies are the most effective treatments for BoNT intoxication. We generated human monoclonal antibodies neutralizing type B botulinum neurotoxin (BoNT/B), designated M2 and M4. The combination of these antibodies exhibited a strong neutralizing effect against BoNT/B toxicity. In this study, we analyzed the mechanisms of action of these antibodies in vitro. M4 binds to the C-terminus of the heavy chain (the receptor-binding domain) and inhibits BoNT/B binding to neuronal PC12 cells. Although M2 recognized the light (L) chain (the metalloprotease domain), it did not inhibit substrate (VAMP2) cleavage in the cleavage assay. M2 increased the surface localization of BoNT/B in PC12 cells at a later time point, suggesting that M2 inhibits the translocation of the L chain from synaptic vesicles to the cytosol. These results indicate that M2 and M4 inhibit the different processes of BoNT/B individually and that multistep inhibition is important for the synergistic effect of the combination of monoclonal antibodies. Our findings may facilitate the development of effective therapeutic antibodies against BoNTs.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Mayu Kitamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Aki Yamaguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Nobuhide Kobayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
2
|
Jiang Y, Wang R, Guo J, Cheng K, Chen L, Wang X, Li Y, Du P, Gao C, Lu J, Yu Y, Yang Z. Isolation and characterization of Hc-targeting chimeric heavy chain antibodies neutralizing botulinum neurotoxin type B. Front Immunol 2024; 15:1380694. [PMID: 38779676 PMCID: PMC11109933 DOI: 10.3389/fimmu.2024.1380694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Background Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is one of the most potent known toxins. Moreover, BoNT is classified as one of the most important biological warfare agents that threatens the biosafety of the world. Currently, the approved treatment for botulism in humans is the use of polyvalent horse serum antitoxins. However, they are greatly limited because of insufficient supply and adverse reactions. Thus, treatment of human botulism requires the development of effective toxin-neutralizing antibodies. Considering their advantages, neutralizing nanobodies will play an increasing role as BoNTs therapeutics. Methods Herein, neutralizing nanobodies binding to the heavy chain (Hc) domain of BoNT/B (BHc) were screened from a phage display library. Then, BoNT/B-specific clones were identified and fused with the human Fc fragment (hFc) to form chimeric heavy chain antibodies. Finally, the affinity, specificity, and neutralizing activity of antibodies against BoNT/B in vivo were evaluated. Results The B5-hFc, B9-hFc and B12-hFc antibodies demonstrated high affinity for BHc in the nanomolar range. The three antibodies were proven to have potent neutralizing activity against BoNT/B in vivo. Conclusion The results demonstrate that inhibiting toxin binding to the host receptor is an efficient strategy and the three antibodies could be used as candidates for the further development of drugs to prevent and treat botulism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Silkina MV, Kartseva AS, Riabko AK, Makarova MA, Rogozin MM, Romanenko YO, Shemyakin IG, Dyatlov IA, Firstova VV. New approach to generating of human monoclonal antibodies specific to the proteolytic domain of botulinum neurotoxin A. BIOIMPACTS : BI 2023; 14:27680. [PMID: 39104622 PMCID: PMC11298023 DOI: 10.34172/bi.2023.27680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 08/07/2024]
Abstract
Introduction Botulinum neurotoxins (BoNTs) cause botulism and are the most potent natural toxins known. Immunotherapy with neutralizing monoclonal antibodies (MAbs) is considered to be the most effective immediate response to BoNT exposure. Hybridoma technology remains the preferred method for producing MAbs with naturally paired immunoglobulin genes and with preserved innate functions of immune cells. The affinity-matured human antibody repertoire may be ideal as a source for antibody therapeutics against BoNTs. In an effort to develop novel BoNT type A (BoNT/A) immunotherapeutics, sorted by flow cytometry plasmablasts and activated memory B cells from a donor repeatedly injected with BoNT/A for aesthetic botulinum therapy could be used due to obtain hybridomas producing native antibodies. Methods Plasmablasts and activated memory B-cells were isolated from whole blood collected 7 days after BoNT/A injection and sorted by flow cytometry. The sorted cells were then electrofused with the K6H6/B5 cell line, resulting in a producer of native human monoclonal antibodies (huMAbs). The 3 antibodies obtained were then purified by affinity chromatography, analyzed for binding by Western blot assay and neutralization by FRET assay. Results We have succeeded in creating 3 hybridomas that secrete huMAbs specific to native BoNT/A and the proteolytic domain (LC) of BoNT/A. The 1B9 antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusion The use activated plasmablasts and memory B-cells isolated at the peak of the immune response (at day 7 of immunogenesis) that have not yet completed the terminal stage of differentiation but have undergone somatic hypermutation for hybridization allows us to obtain specific huMAbs even when the immune response of the donor is weak (with low levels of specific antibodies and specific B-cells in blood). A BoNT/A LC-specific antibody is capable of effectively inhibiting BoNT/A by mechanisms not previously associated with antibodies that neutralize BoNT. Antibodies specific to BoNT LC can be valuable components of a mixture of antibodies against BoNT exposure.
Collapse
Affiliation(s)
| | - Alena Sergeevna Kartseva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | | | | | - Yana Olegovna Romanenko
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | - Ivan Alekseevich Dyatlov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | |
Collapse
|
4
|
Fan Y, Lou J, Tam CC, Wen W, Conrad F, Leal da Silva Alves P, Cheng LW, Garcia-Rodriguez C, Farr-Jones S, Marks JD. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins (Basel) 2023; 15:toxins15050316. [PMID: 37235351 DOI: 10.3390/toxins15050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Equine-derived antitoxin (BAT®) is the only treatment for botulism from botulinum neurotoxin serotype G (BoNT/G). BAT® is a foreign protein with potentially severe adverse effects and is not renewable. To develop a safe, more potent, and renewable antitoxin, humanized monoclonal antibodies (mAbs) were generated. Yeast displayed single chain Fv (scFv) libraries were prepared from mice immunized with BoNT/G and BoNT/G domains and screened with BoNT/G using fluorescence-activated cell sorting (FACS). Fourteen scFv-binding BoNT/G were isolated with KD values ranging from 3.86 nM to 103 nM (median KD 20.9 nM). Five mAb-binding non-overlapping epitopes were humanized and affinity matured to create antibodies hu6G6.2, hu6G7.2, hu6G9.1, hu6G10, and hu6G11.2, with IgG KD values ranging from 51 pM to 8 pM. Three IgG combinations completely protected mice challenged with 10,000 LD50s of BoNT/G at a total mAb dose of 6.25 μg per mouse. The mAb combinations have the potential for use in the diagnosis and treatment of botulism due to serotype G and, along with antibody combinations to BoNT/A, B, C, D, E, and F, provide the basis for a fully recombinant heptavalent botulinum antitoxin to replace the legacy equine product.
Collapse
Affiliation(s)
- Yongfeng Fan
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Christina C Tam
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Fraser Conrad
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Priscila Leal da Silva Alves
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Luisa W Cheng
- Western Regional Research Center, Agricultural Research Station, United States Department of Agriculture, Albany, CA 94710, USA
| | - Consuelo Garcia-Rodriguez
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, 1001 Potrero Ave., San Francisco, CA 94110, USA
| |
Collapse
|
5
|
Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther 2022; 240:108233. [PMID: 35738431 PMCID: PMC9212443 DOI: 10.1016/j.pharmthera.2022.108233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.
Collapse
|
6
|
Fan Y, Sun Z, Conrad F, Wen W, Zhao L, Lou J, Zhou Y, Farr-Jones S, Marks JD. Multicolor fluorescence activated cell sorting to generate humanized monoclonal antibody binding seven subtypes of BoNT/F. PLoS One 2022; 17:e0273512. [PMID: 36048906 PMCID: PMC9436041 DOI: 10.1371/journal.pone.0273512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Generating specific monoclonal antibodies (mAbs) that neutralize multiple antigen variants is challenging. Here, we present a strategy to generate mAbs that bind seven subtypes of botulinum neurotoxin serotype F (BoNT/F) that differ from each other in amino acid sequence by up to 36%. Previously, we identified 28H4, a mouse mAb with poor cross-reactivity to BoNT/F1, F3, F4, and F6 and with no detectable binding to BoNT/F2, F5, or F7. Using multicolor labeling of the different BoNT/F subtypes and fluorescence-activated cell sorting (FACS) of yeast displayed single-chain Fv (scFv) mutant libraries, 28H4 was evolved to a humanized mAb hu6F15.4 that bound each of seven BoNT/F subtypes with high affinity (KD 5.81 pM to 659.78 pM). In contrast, using single antigen FACS sorting, affinity was increased to the subtype used for sorting but with a decrease in affinity for other subtypes. None of the mAb variants showed any binding to other BoNT serotypes or to HEK293 or CHO cell lysates by flow cytometry, thus demonstrating stringent BoNT/F specificity. Multicolor FACS-mediated antibody library screening is thus proposed as a general method to generate multi-specific antibodies to protein subtypes such as toxins or species variants.
Collapse
Affiliation(s)
- Yongfeng Fan
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Zhengda Sun
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Fraser Conrad
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Weihua Wen
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Lequn Zhao
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jianlong Lou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yu Zhou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Shauna Farr-Jones
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - James D. Marks
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
7
|
Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13090671. [PMID: 34564675 PMCID: PMC8471557 DOI: 10.3390/toxins13090671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known and can induce respiratory failure requiring long-term intensive care. Treatment of botulism includes the administration of antitoxins. Monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics, due to their potency and safety. A three-mAb combination has been developed that specifically neutralizes BoNT serotype A (BoNT/A), and a separate three mAb combination has been developed that specifically neutralizes BoNT serotype B (BoNT/B). A six mAb cocktail, designated G03-52-01, has been developed that combines the anti-BoNT/A and anti-BoNT/B mAbs. The pharmacokinetics and neutralizing antibody concentration (NAC) of G03-52-01 has been determined in guinea pigs, and these parameters were correlated with protection against an inhalation challenge of BoNT/A1 or BoNT/B1. Previously, it was shown that each antibody demonstrated a dose-dependent mAb serum concentration and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intraperitoneal (IP) injection and that a single IM injection of G03-52-01 administered 48 h pre-exposure protected guinea pigs against an inhalation challenge of up to 93 LD50s of BoNT/A1 and 116 LD50s of BoNT/B1. The data presented here advance our understanding of the relationship of the neutralizing NAC to the measured circulating antibody concentration and provide additional support that a single IM or intravenous (IV) administration of G03-52-01 will provide pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A and BoNT/B.
Collapse
|
8
|
A Four-Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotypes C and D. Toxins (Basel) 2021; 13:toxins13090641. [PMID: 34564645 PMCID: PMC8472335 DOI: 10.3390/toxins13090641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/04/2022] Open
Abstract
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.
Collapse
|
9
|
Li Z, Lu JS, Liu S, Wang R, Xu Q, Yu YZ, Yang ZX. Recombinant L-HN Fusion Antigen Derived from the L and HN Domains of Botulinum Neurotoxin B Stimulates a Protective Antibody Response Against Active Neurotoxin. Neurotox Res 2021; 39:1044-1053. [PMID: 33616873 DOI: 10.1007/s12640-021-00337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/04/2023]
Abstract
Botulinum neurotoxin (BoNT) is a neurotoxin produced by Clostridium botulinum in an anaerobic environment. BoNT is the most toxic protein among bacteria, animals, plants, and chemical substances reported to date. BoNTs are 150 kDa proteins composed of three major functional domains: catalytic (L domain, 50 kDa), translocation (HN domain, 50 kDa), and receptor-binding (Hc domain, 50 kDa) domains. Most studies have focused on the use of the Hc domain as an antigen because it is capable of generating robust protective immunity and contains some functional neutralizing epitopes. In the present study, we produced and characterized a recombinant L-HN fusion fragment of the parent BoNT/B (BL-HN) composed of L and HN domains with a deletion in the Hc domain (BHc). When the BL-HN protein was expressed in E. coli, it retained its stable structure and antigenicity. As a vaccine antigen, the recombinant BL-HN protein was found to induce sufficient protection against native BoNT/B in a mouse model. The BL-HN subunit vaccine could also induce a strong humoral immune response and generate sufficient neutralizing antibodies in immunized mice. Therefore, BL-HN may retain the native neurotoxin structure and critical epitopes responsible for inducing serum neutralizing antibodies. Studies of the dose-dependent immunoprotective effects further confirmed that the BL-HN antigen could provide potent protective immunity. This finding suggests that BL-HN can play an important role in immune protection against BoNT/B. Therefore, the BL-HN fusion fragment provides an excellent platform for the design of recombinant botulinum vaccines and neutralizing antibodies.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Institute of Biotechnology, Beijing, 100071, China.,Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shan Liu
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
10
|
A Monoclonal Antibody Combination against both Serotypes A and B Botulinum Toxin Prevents Inhalational Botulism in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13010031. [PMID: 33466411 PMCID: PMC7824882 DOI: 10.3390/toxins13010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are extremely potent and can induce respiratory failure, requiring long-term intensive care to prevent death. Recombinant monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics. In contrast, equine antitoxin cannot be used prophylactically and has a short half-life. Two three-mAb combinations are in development that specifically neutralize BoNT serotype A (BoNT/A) and B (BoNT/B). The three-mAb combinations addressing a single serotype provided pre-exposure prophylaxis in the guinea pig inhalation model. A lyophilized co-formulation of six mAbs, designated G03-52-01, that addresses both A and B serotypes is in development. Here, we investigated the efficacy of G03-52-01 to protect guinea pigs against an aerosol exposure challenge of BoNT/A1 or BoNT/B1. Previously, it was found that each antibody demonstrated a dose-dependent exposure and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intravenous (IV) injection. Here we show that G03-52-01, in a single IM injection of G03-52-01 administered 48 h pre-exposure, protected guinea pigs against an aerosol challenge of up to 238 LD50s of BoNT/A1 and 191 LD50s of BoNT/B1. These data suggest that a single IM administration of G03-52-01 provides pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A1 or BoNT/B1.
Collapse
|
11
|
Matsumura T, Amatsu S, Misaki R, Yutani M, Du A, Kohda T, Fujiyama K, Ikuta K, Fujinaga Y. Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins (Basel) 2020; 12:toxins12050302. [PMID: 32392791 PMCID: PMC7291131 DOI: 10.3390/toxins12050302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
Botulinum neurotoxin (BoNT) is the most potent natural toxin known. Of the seven BoNT serotypes (A to G), types A, B, E, and F cause human botulism. Treatment of human botulism requires the development of effective toxin-neutralizing antibodies without side effects such as serum sickness and anaphylaxis. In this study, we generated fully human monoclonal antibodies (HuMAbs) against serotype B BoNT (BoNT/B1) using a murine–human chimera fusion partner cell line named SPYMEG. Of these HuMAbs, M2, which specifically binds to the light chain of BoNT/B1, showed neutralization activity in a mouse bioassay (approximately 10 i.p. LD50/100 µg of antibody), and M4, which binds to the C-terminal of heavy chain, showed partial protection. The combination of two HuMAbs, M2 (1.25 µg) and M4 (1.25 µg), was able to completely neutralize BoNT/B1 (80 i.p. LD50) with a potency greater than 80 i.p. LD50/2.5 µg of antibodies, and was effective both prophylactically and therapeutically in the mouse model of botulism. Moreover, this combination showed broad neutralization activity against three type B subtypes, namely BoNT/B1, BoNT/B2, and BoNT/B6. These data demonstrate that the combination of M2 and M4 is promising in terms of a foundation for new human therapeutics for BoNT/B intoxication.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Ryo Misaki
- Applied Microbiology Laboratory, International Center for Biotechnology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (R.M.); (K.F.)
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
| | - Anariwa Du
- Department of Virology, Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (A.D.); (K.I.)
| | - Tomoko Kohda
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, Osaka 598-8531, Japan;
| | - Kazuhito Fujiyama
- Applied Microbiology Laboratory, International Center for Biotechnology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (R.M.); (K.F.)
| | - Kazuyoshi Ikuta
- Department of Virology, Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (A.D.); (K.I.)
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development, Tokyo 102-0076, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; (T.M.); (S.A.); (M.Y.)
- Correspondence: ; Tel.: +81-76-265-2200
| |
Collapse
|
12
|
Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins. Antimicrob Agents Chemother 2019:AAC.01270-19. [PMID: 31591130 PMCID: PMC6879217 DOI: 10.1128/aac.01270-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. BoNTs are also classified as Tier 1 biothreat agents due to their high potency and lethality. The existence of seven BoNT serotypes (A-G), which differ between 35% to 68% in amino acid sequence, necessitates the development of serotype specific countermeasures. We present results of a Phase 1 clinical study of an anti-toxin to BoNT serotypes C and D, NTM-1634, which consists of an equimolar mixture of four fully human IgG1 monoclonal antibodies (mAbs), each binding to non-overlapping epitopes on BoNT serotypes C and D resulting in potent toxin neutralization in rodents. This first-in-human study evaluated the safety and pharmacokinetics of escalating doses of NTM-1634 administered intravenously to healthy adults (NCT03046550). Three cohorts of eight healthy subjects received a single intravenous dose of NTM-1634 or placebo at 0.33 mg/kg, 0.66 mg/kg or 1 mg/kg. Follow-up examinations and pharmacokinetic evaluations were continued up to 121 days post-infusion. Subjects were monitored using physical examinations, hematology and chemistry blood tests, and electrocardiograms. Pharmacokinetic parameters were estimated using noncompartmental methods. The results demonstrated that the materials were safe and well-tolerated with the expected half-lives for human mAbs and with minimal anti-drug antibodies detected over the dose ranges and duration of the study.
Collapse
|
13
|
Rasetti-Escargueil C, Popoff MR. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins (Basel) 2019; 11:toxins11090528. [PMID: 31547338 PMCID: PMC6783819 DOI: 10.3390/toxins11090528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is produced by the anaerobic, Gram-positive bacterium Clostridium botulinum. As one of the most poisonous toxins known and a potential bioterrosism agent, BoNT is characterized by a complex mode of action comprising: internalization, translocation and proteolytic cleavage of a substrate, which inhibits synaptic exocytotic transmitter release at neuro-muscular nerve endings leading to peripheral neuroparalysis of the skeletal and autonomic nervous systems. There are seven major serologically distinct toxinotypes (A-G) of BoNT which act on different substrates. Human botulism is generally caused by BoNT/A, B and E. Due to its extreme lethality and potential use as biological weapon, botulism remains a global public health concern. Vaccination against BoNT, although an effective strategy, remains undesirable due to the growing expectation around therapeutic use of BoNTs in various pathological conditions. This review focuses on the current approaches for botulism control by immunotherapy, highlighting the future challenges while the molecular underpinnings among subtypes variants and BoNT sequences found in non-clostridial species remain to be elucidated.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Michel R Popoff
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
14
|
Pharmacokinetics of Human Recombinant Anti-Botulinum Toxin Antibodies in Rats. Toxins (Basel) 2019; 11:toxins11060345. [PMID: 31212950 PMCID: PMC6628388 DOI: 10.3390/toxins11060345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are potential biothreat agents due to their high lethality, potency, and ease of distribution, thus the development of antitoxins is a high priority to the US government. This study examined pre-clinical pharmacokinetic studies in rats of four oligoclonal anti-BoNT mAb-based therapeutics (NTM-1631, NTM-1632, NTM-1633, NTM-1634) for five BoNT serotypes (A, B, E, C, and D). NTM-1631, NTM-1632, and NTM-1633 each consist of three IgG1 mAbs, each with a distinct human or humanized variable region which bind to distinct epitopes on BoNT serotype A, B, or E respectively. NTM-1634 consists of four human immunoglobulin G1 (IgG1) mAbs binding BoNT C/D mosaic toxins. The mechanism of these antitoxins requires that three antibodies simultaneously bind toxin to achieve rapid clearance. Rats (total 378) displayed no adverse clinical signs attributed to antibody treatment from any of the antitoxins. Pharmacokinetic evaluation demonstrated that the individual mAbs are slowly eliminated, exhibiting dose-dependent exposure and long elimination half-lives ranging from 6.5 days to 10 days. There were no consistent differences observed between males and females or among the individual antibodies in each formulation in half-life. Anti-drug antibodies (ADA) were observed, as expected for human antibodies administered to rats. The results presented were used to support the clinical investigation of antibody-based botulism antitoxins.
Collapse
|
15
|
A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins (Basel) 2018; 10:toxins10030105. [PMID: 29494481 PMCID: PMC5869393 DOI: 10.3390/toxins10030105] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/26/2022] Open
Abstract
Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.
Collapse
|
16
|
Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Evaluation of anti-botulinum neurotoxin single domain antibodies with additional optimization for improved production and stability. Toxicon 2017; 135:51-58. [DOI: 10.1016/j.toxicon.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/27/2023]
|
17
|
A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS One 2017; 12:e0174187. [PMID: 28323873 PMCID: PMC5360321 DOI: 10.1371/journal.pone.0174187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/04/2017] [Indexed: 11/19/2022] Open
Abstract
Human botulism is primarily caused by botulinum neurotoxin (BoNT) serotypes A, B and E, with around 1% caused by serotype F (BoNT/F). BoNT/F comprises at least seven different subtypes with the amino acid sequence difference between subtypes as high as 36%. The sequence differences present a significant challenge for generating monoclonal antibodies (mAbs) that can bind, detect and neutralize all BoNT/F subtypes. We used repertoire cloning of immune mouse antibody variable (V) regions and yeast display to generate a panel of 33 lead single chain Fv (scFv) mAbs that bound one or more BoNT/F subtypes with a median equilibrium dissociation constant (KD) of 4.06 × 10-9 M. By diversifying the V-regions of the lead mAbs and selecting for cross reactivity we generated five mAbs that bound each of the seven subtypes. Three scFv binding non-overlapping epitopes were converted to IgG that had KD for the different BoNT/F subtypes ranging from 2.2×10-8 M to 1.47×10-12 pM. An equimolar combination of the mAbs was able to potently neutralize BoNT/F1, F2, F4 and F7 in the mouse neutralization assay. The mAbs have potential utility as diagnostics capable of recognizing the known BoNT/F subtypes and could be developed as antitoxins to prevent and treat type F botulism.
Collapse
|
18
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Cheng LW, Henderson TD, Lam TI, Stanker LH. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B. Toxins (Basel) 2015; 7:5068-78. [PMID: 26633496 PMCID: PMC4690113 DOI: 10.3390/toxins7124863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.
Collapse
Affiliation(s)
- Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Thomas D Henderson
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Tina I Lam
- Gilead Sciences, Inc., Foster City, CA 94404, USA.
| | - Larry H Stanker
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|