2
|
Tanaka J, Abe S, Hayakawa T, Kojima M, Yamashita K, Hirata K, Ueno T. Crystal structure of the in-cell Cry1Aa purified from Bacillus thuringiensis. Biochem Biophys Res Commun 2023; 685:149144. [PMID: 37922785 DOI: 10.1016/j.bbrc.2023.149144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
In-cell protein crystals which spontaneously crystallize in living cells, have recently been analyzed in investigations of their structures and biological functions. The crystals have been challenging to analyze structurally because of their small size. Therefore, the number of in-cell protein crystals in which the native structure has been determined is limited because most of the structures of in-cell crystals have been determined by recrystallization after dissolution. Some proteins have been reported to form intermolecular disulfide bonds in natural protein crystals that stabilize the crystals. Here, we focus on Cry1Aa, a cysteine-rich protein that crystallizes in Bacillus thuringiensis (Bt) and forms disulfide bonds. Previously, the full-length structure of 135 kDa Cry1Ac, which is the same size as Cry1Aa, was determined by recrystallization of dissolved protein from crystals purified from Bt cells. However, the formation of disulfide bonds has not been investigated because it was necessary to replace cysteine residues to prevent aggregation of the soluble protein. In this work, we succeeded in direct X-ray crystallographic analysis using crystals purified from Bt cells and characterized the cross-linked network of disulfide bonds within Cry1Aa crystals.
Collapse
Affiliation(s)
- Junko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan.
| | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
4
|
Tetreau G, Sawaya MR, De Zitter E, Andreeva EA, Banneville AS, Schibrowsky NA, Coquelle N, Brewster AS, Grünbein ML, Kovacs GN, Hunter MS, Kloos M, Sierra RG, Schiro G, Qiao P, Stricker M, Bideshi D, Young ID, Zala N, Engilberge S, Gorel A, Signor L, Teulon JM, Hilpert M, Foucar L, Bielecki J, Bean R, de Wijn R, Sato T, Kirkwood H, Letrun R, Batyuk A, Snigireva I, Fenel D, Schubert R, Canfield EJ, Alba MM, Laporte F, Després L, Bacia M, Roux A, Chapelle C, Riobé F, Maury O, Ling WL, Boutet S, Mancuso A, Gutsche I, Girard E, Barends TRM, Pellequer JL, Park HW, Laganowsky AD, Rodriguez J, Burghammer M, Shoeman RL, Doak RB, Weik M, Sauter NK, Federici B, Cascio D, Schlichting I, Colletier JP. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat Commun 2022; 13:4376. [PMID: 35902572 PMCID: PMC9334358 DOI: 10.1038/s41467-022-31746-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Elke De Zitter
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Natalie A Schibrowsky
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nicolas Coquelle
- Large-Scale Structures Group, Institut Laue-Langevin, F-38000, Grenoble, France
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Giorgio Schiro
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Pei Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Myriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dennis Bideshi
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ninon Zala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Irina Snigireva
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ethan J Canfield
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mario M Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | | | | | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Amandine Roux
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | | | - François Riobé
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adrian Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Hyun-Woo Park
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Arthur D Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Jose Rodriguez
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Weik
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Gao J, Qian H, Guo X, Mi Y, Guo J, Zhao J, Xu C, Zheng T, Duan M, Tang Z, Lin C, Shen Z, Jiang Y, Wang X. The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host's fluorescent intensity. Microb Cell Fact 2020; 19:112. [PMID: 32448275 PMCID: PMC7247199 DOI: 10.1186/s12934-020-01371-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The signal peptides (SPs) of secretory proteins are frequently used or modified to guide recombinant proteins outside the cytoplasm of prokaryotic cells. In the periplasmic space and extracellular environment, recombinant proteins are kept away from the intracellular proteases and often they can fold correctly and efficiently. Consequently, expression levels of the recombinant protein can be enhanced by the presence of a SP. However, little attention has been paid to the use of SPs with low translocation efficiency for recombinant protein production. In this paper, the function of the signal peptide of Bacillus thuringiensis (Bt) Cry1Ia toxin (Iasp), which is speculated to be a weak translocation signal, on regulation of protein expression was investigated using fluorescent proteins as reporters. RESULTS When fused to the N-terminal of eGFP or mCherry, the Iasp can improve the expression of the fluorescent proteins and as a consequence enhance the fluorescent intensity of both Escherichia coli and Bt host cells. Real-time quantitative PCR analysis revealed the higher transcript levels of Iegfp over those of egfp gene in E. coli TG1 cells. By immunoblot analysis and confocal microscope observation, lower translocation efficiency of IeGFP was demonstrated. The novel fluorescent fusion protein IeGFP was then used to compare the relative strengths of cry1Ia (Pi) and cry1Ac (Pac) gene promoters in Bt strain, the latter promoter proving the stronger. The eGFP reporter, by contrast, cannot indicate unambiguously the regulation pattern of Pi at the same level of sensitivity. The fluorescent signals of E. coli and Bt cells expressing the Iasp fused mCherry (ImCherry) were also enhanced. Importantly, the Iasp can also enhanced the expression of two difficult-to-express proteins, matrix metalloprotease-13 (MMP13) and myostatin (growth differentiating factor-8, GDF8) in E. coli BL21-star (DE3) strain. CONCLUSIONS We identified the positive effects of a weak signal peptide, Iasp, on the expression of fluorescent proteins and other recombinant proteins in bacteria. The produced IeGFP and ImCherry can be used as novel fluorescent protein variants in prokaryotic cells. The results suggested the potential application of Iasp as a novel fusion tag for improving the recombinant protein expression.
Collapse
Affiliation(s)
- Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| | - Hongmei Qian
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqin Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yi Mi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Junpei Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Juanli Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chao Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ting Zheng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming Duan
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|