1
|
Hoyt KM, Barr JR, Hopkins AO, Dykes JK, Lúquez C, Kalb SR. Validation of a clinical assay for botulinum neurotoxins through mass spectrometric detection. J Clin Microbiol 2024; 62:e0162923. [PMID: 38687021 PMCID: PMC11237762 DOI: 10.1128/jcm.01629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Botulism is a paralytic disease due to the inhibition of acetylcholine exocytosis at the neuromuscular junction, which can be lethal if left untreated. Botulinum neurotoxins (BoNTs) are produced by some spore-forming Clostridium bacteria. The current confirmatory assay to test for BoNTs in clinical specimens is the gold-standard mouse bioassay. However, an Endopep-MS assay method has been developed to detect BoNTs in clinical samples using benchtop mass spectrometric detection. This work demonstrates the validation of the Endopep-MS method for clinical specimens with the intent of method distribution in public health laboratories. The Endopep-MS assay was validated by assessing the sensitivity, robustness, selectivity, specificity, and reproducibility. The limit of detection was found to be equivalent to or more sensitive than the mouse bioassay. Specificity studies determined no cross-reactivity between the different serotypes and no false positives from an exclusivity panel of culture supernatants of enteric disease organisms and non-toxigenic strains of Clostridium. Inter-serotype specificity testing with 19 BoNT subtypes was 100% concordant with the expected results, accurately determining the presence of the correct serotype and the absence of incorrect serotypes. Additionally, a panel of potential interfering substances was used to test selectivity. Finally, clinical studies included clinical specimen stability and reproducibility, which was found to be 99.9% from a multicenter evaluation study. The multicenter validation study also included a clinical validation study, which yielded a 99.4% correct determination rate. Use of the Endopep-MS method will improve the capacity and response time for laboratory confirmation of botulism in public health laboratories.
Collapse
Affiliation(s)
- Kaitlin M. Hoyt
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - André O. Hopkins
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet K. Dykes
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolina Lúquez
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suzanne R. Kalb
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Harmsen MM, Cornelissen JC, van der Wal FJ, Bergervoet JHW, Koene M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins (Basel) 2023; 15:573. [PMID: 37755999 PMCID: PMC10535107 DOI: 10.3390/toxins15090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that require high-affinity immunocapture reagents for use in endopeptidase-based assays. Here, 30 novel and 2 earlier published llama single-domain antibodies (VHHs) against the veterinary-relevant BoNT serotypes C and D were yeast-produced. These VHHs recognized 10 independent antigenic sites, and many cross-reacted with the BoNT/DC and CD mosaic variants. As VHHs are highly suitable for genetically linking to increase antigen-binding affinity, 52 VHH multimers were produced and their affinity for BoNT/C, D, DC, and CD was determined. A selection of 15 multimers with high affinity (KD < 0.1 nM) was further shown to be resilient to a high salt wash that is used for samples from complex matrices and bound native BoNTs from culture supernatants as shown by Endopep-MS. High-affinity multimers suitable for further development of a highly sensitive Endopep-MS assay include four multimers that bind both BoNT/D and CD with KD of 14-99 pM, one multimer for BoNT/DC (65 pM) that also binds BoNT/C (75 pM), and seven multimers for BoNT/C (<1-19 pM), six of which also bind BoNT/DC with lower affinity (93-508 pM). In addition to application in diagnostic tests, these VHHs could be used for the development of novel therapeutics for animals or humans.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan C. Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Fimme J. van der Wal
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan H. W. Bergervoet
- Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| |
Collapse
|
3
|
Current Developments in Diagnostic Assays for Laboratory Confirmation and Investigation of Botulism. J Clin Microbiol 2021; 60:e0013920. [PMID: 34586891 DOI: 10.1128/jcm.00139-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of botulinum neurotoxin or isolation of the toxin producing organism is required for the laboratory confirmation of botulism in clinical specimens. In an effort to reduce animal testing required by the gold standard method of botulinum neurotoxin detection, the mouse bioassay, many technologies have been developed to detect and characterize the causative agent of botulism. Recent advancements in these technologies have led to improvements in technical performance of diagnostic assays; however, many emerging assays have not been validated for the detection of all serotypes in complex clinical and environmental matrices. Improvements to culture protocols, endopeptidase-based assays, and a variety of immunological and molecular methods have provided laboratories with a variety of testing options to evaluate and incorporate into their testing algorithms. While significant advances have been made to improve these assays, additional work is necessary to evaluate these methods in various clinical matrices and to establish standardized criteria for data analysis and interpretation.
Collapse
|
4
|
MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enferm Infecc Microbiol Clin 2021; 39:192-200. [DOI: 10.1016/j.eimc.2020.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
|
5
|
Detection of Active BoNT/C and D by EndoPep-MS Using MALDI Biotyper Instrument and Comparison with the Mouse Test Bioassay. Toxins (Basel) 2020; 13:toxins13010010. [PMID: 33374240 PMCID: PMC7824663 DOI: 10.3390/toxins13010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most poisonous known biological substances, and therefore the availability of reliable, easy-to use tools for BoNT detection are important goals for food safety and human and animal health. The reference method for toxin detection and identification is the mouse bioassay (MBA). An EndoPep-MS method for BoNT differentiation has been developed based on mass spectrometry. We have validated and implemented the EndoPep-MS method on a Bruker MALDI Biotyper for the detection of BoNT/C and D serotypes. The method was extensively validated using experimentally and naturally contaminated samples comparing the results with those obtained with the MBA. Overall, the limit of detection (LoD) for both C and D toxins were less than or equal to two mouse lethal dose 50 (mLD50) per 500 µL for all tested matrices with the exception of feces spiked with BoNT/C which showed signals not-related to specific peptide fragments. Diagnostic sensitivity, specificity and positive predictive value were 100% (95% CI: 87.66–100%), 96.08% (95% CI: 86.54–99.52%), and 93.33% (95% CI: 78.25–98.20%), respectively, and accuracy was 97.47% (95% CI: 91.15–99.69%). In conclusion, the tests carried out showed that the EndoPep-MS method, initially developed using more powerful mass spectrometers, can be applied to the Bruker MALDI Biotyper instrument with excellent results including for detection of the proteolytic activity of BoNT/C, BoNT/D, BoNT/CD, and BoNT/DC toxins.
Collapse
|
6
|
Toxemia in Human Naturally Acquired Botulism. Toxins (Basel) 2020; 12:toxins12110716. [PMID: 33202855 PMCID: PMC7697460 DOI: 10.3390/toxins12110716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Human botulism is a severe disease characterized by flaccid paralysis and inhibition of certain gland secretions, notably salivary secretions, caused by inhibition of neurotransmitter release. Naturally acquired botulism occurs in three main forms: food-borne botulism by ingestion of preformed botulinum neurotoxin (BoNT) in food, botulism by intestinal colonization (infant botulism and intestinal toxemia botulism in infants above one year and adults), and wound botulism. A rapid laboratory confirmation of botulism is required for the appropriate management of patients. Detection of BoNT in the patient's sera is the most direct way to address the diagnosis of botulism. Based on previous published reports, botulinum toxemia was identified in about 70% of food-borne and wound botulism cases, and only in about 28% of infant botulism cases, in which the diagnosis is mainly confirmed from stool sample investigation. The presence of BoNT in serum depends on the BoNT amount ingested with contaminated food or produced locally in the intestine or wound, and the timeframe between serum sampling and disease onset. BoNT levels in patient's sera are most frequently low, requiring a highly sensitive method of detection. Mouse bioassay is still the most used method of botulism identification from serum samples. However, in vitro methods based on BoNT endopeptidase activity with detection by mass spectrometry or immunoassay have been developed and depending on BoNT type, are more sensitive than the mouse bioassay. These new assays show high specificity for individual BoNT types and allow more accurate differentiation between positive toxin sera from botulism and autoimmune neuropathy patients.
Collapse
|
7
|
Frye EA, Egan C, Perry MJ, Crouch EE, Burbank KE, Kelly KM. Outbreak of botulism type A in dairy cows detected by MALDI-TOF mass spectrometry. J Vet Diagn Invest 2020; 32:722-726. [PMID: 32715936 DOI: 10.1177/1040638720943127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Twenty-eight lactating dairy cattle in New York State were exposed to botulism toxin; 12 died and 16 recovered but never returned to full productivity. Pieces of a raccoon carcass were found in the total mixed ration on the first day of the outbreak. Clinical signs included anorexia, decreased milk production, decreased tongue tone, profound weakness, and recumbency. Clostridium botulinum type A (BoNT/A) was detected in rumen contents from 2 deceased cows via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, C. botulinum type C was cultured from the liver of a third cow, and C. botulinum neurotoxin-producing type C gene (bont/C) was detected via real-time PCR. On postmortem examination, 4 cows had findings suggestive of toxic myopathy, but the cause and significance of these lesions is unknown given that botulism is typically not associated with gross or histologic lesions. This outbreak of BoNT/A in cattle in North America was diagnosed via MALDI-TOF MS, a rapid and sensitive modality for detection of botulinum preformed neurotoxin.
Collapse
Affiliation(s)
- Elisha A Frye
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| | - Christina Egan
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| | - Michael J Perry
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| | - Esther E Crouch
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| | - Kyle E Burbank
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| | - Kathleen M Kelly
- Cornell University, College of Veterinary Medicine, Ithaca, NY (Frye, Crouch, Kelly).,Wadsworth Center Biodefense Laboratory, New York State Department of Health, Albany, NY (Egan, Perry).,Countryside Veterinary Clinic, Lowville, NY (Burbank)
| |
Collapse
|
8
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
9
|
Rudnicka K, Durka K, Chwaluk P, Chmiela M. Metody stosowane do wykrywania i identyfikacji toksyn botulinowych w próbkach klinicznych i żywności*. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Botulism is a severe neuroparalytic illness, which affects the nervous system. It is caused by botulinum neurotoxins (BoNTs), produced by anaerobic gram-positive bacteria Clostridium botulinum. There are 7 serotypes of BoNT A-G, but BoNT A/B/D/E plays a major role in botulism affecting humans. Foodborne botulism (classic botulism) is the most frequent
clinical manifestation occurring after consumption of food containing botulinum neurotoxins.
The diagnosis of botulism is based on clinical symptoms; however, recommended
and alternative laboratory methods are used to confirm the etiology of symptoms and the
identification of BoNT toxin type. The aim of this work was to present the epidemiology of
foodborne botulism in Poland and to gather and analyze the available diagnostic methods
that allow us to detect BoNT in clinical samples. Using the epidemiological reports of National
Institute of Hygiene in Poland and findings presented in the Przegląd Epidemiologiczny,
the incidence of classical botulism in Poland has been presented over a period of recent
18 years. Searching for the optimal diagnostic method for BoNT identification in various
samples, we have confronted the sensitivity and specificity of recently available alternative
methods with classical biological assay.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| | - Karolina Durka
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| | - Paweł Chwaluk
- Wojewódzki Szpital Specjalistyczny w Białej Podlaskiej, Biała Podlaska
| | - Magdalena Chmiela
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
| |
Collapse
|
10
|
Halpin JL, Dykes JK, Katz L, Centurioni DA, Perry MJ, Egan CT, Lúquez C. Molecular Characterization of Clostridium botulinum Harboring the bont/B7 Gene. Foodborne Pathog Dis 2019; 16:428-433. [PMID: 30932710 PMCID: PMC6585170 DOI: 10.1089/fpd.2018.2600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the causative agent of botulism, a rare but serious disease that can result in death if not treated. Infant botulism occurs when C. botulinum colonizes the intestinal tract of infants and produces BoNT. It has been proposed that infants under the age of 1 year are uniquely susceptible to colonization by C. botulinum as their intestinal microbiota is not fully developed and provides little competition, allowing C. botulinum to thrive and produce BoNT in the gut. There are seven well-characterized serotypes (A–G) of BoNT identified by the ability of specific antitoxins to neutralize BoNTs. Molecular technology has allowed researchers to narrow these further into subtypes based on nucleic acid sequences of the botulinum toxin (bont) gene. One of the most recently recognized subtypes for bont/B is subtype bont/B7. We identified through whole genome sequencing five C. botulinum isolates harboring bont/B7 from CDC's strain collection, including patient isolates and an epidemiologically linked isolate from an opened infant formula container. In this study, we report the results of whole genome sequencing analysis of these C. botulinum subtype bont/B7 isolates. Average nucleotide identity and high quality single nucleotide polymorphism (hqSNP) analysis resulted in two major clades. The epidemiologically linked isolates differed from each other by 2–6 hqSNPs, and this clade separated from the other isolates by 95–119 hqSNPs, corroborating available epidemiological evidence.
Collapse
Affiliation(s)
- Jessica L Halpin
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| | - Janet K Dykes
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| | - Lee Katz
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia.,2 Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia
| | - Dominick A Centurioni
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Michael J Perry
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Christina T Egan
- 3 New York State Department of Health, Wadsworth Center, David Axelrod Institute, Albany, New York
| | - Carolina Lúquez
- 1 Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, National Botulism and Enteric Toxins Team, Atlanta, Georgia
| |
Collapse
|
11
|
Schaumann R, Dallacker-Losensky K, Rosenkranz C, Genzel GH, Stîngu CS, Schellenberger W, Schulz-Stübner S, Rodloff AC, Eschrich K. Discrimination of Human Pathogen Clostridium Species Especially of the Heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry. Curr Microbiol 2018; 75:1506-1515. [PMID: 30120528 DOI: 10.1007/s00284-018-1552-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Clostridium species cause several local and systemic diseases. Conventional identification of these microorganisms is in part laborious, not always reliable, time consuming or does not always distinguish different species, i.e., C. botulinum and C. sporogenes. All in, there is a high interest to find out a reliable, powerful and rapid method to identify Clostridium spp. not only on genus but also on species level. The aim of the present study was to identify Clostridium spp. strains and also to find differences and metabolic groups of C. botulinum by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). A total of 123 strains of Clostridium spp. (C. botulinum, n = 40, C. difficile, n = 11, C. tetani, n = 11, C. sordellii, n = 20, C. sporogenes, n = 18, C. innocuum, n = 10, C. perfringens, n = 13) were analyzed by MALDI-TOF MS in combination with methods of multivariate statistical analysis. MALDI-TOF MS analysis in combination with methods of multivariate statistical analysis was able to discriminate between the different tested Clostridium spp., even between species which are closely related and difficult to differentiate by traditional methods, i.e., C. sporogenes and C. botulinum. Furthermore, the method was able to separate the different metabolic groups of C. botulinum. Especially, E gene-positive C. botulinum strains are clearly distinguishable from the other species but also from those producing other toxin types. Thus, MALDI-TOF MS represents a reliable and above all quick method for identification of cultivated Clostridium species.
Collapse
Affiliation(s)
- Reiner Schaumann
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Kevin Dallacker-Losensky
- Department of Trauma Surgery and Orthopedics, Reconstructive and Septic Surgery, and Sports Traumatology, German Armed Forces Hospital Ulm, Ulm, Germany.
| | - Christiane Rosenkranz
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | | | - Catalina S Stîngu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | | | | | - Arne C Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Klaus Eschrich
- Institute of Biochemistry, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|