1
|
Jobst M, Hossain M, Kiss E, Bergen J, Marko D, Del Favero G. Autophagy modulation changes mechano-chemical sensitivity of T24 bladder cancer cells. Biomed Pharmacother 2024; 170:115942. [PMID: 38042111 DOI: 10.1016/j.biopha.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Maliha Hossain
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Janice Bergen
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Zhang L, Zhou X, Li P, Wang Y, Hu Q, Shang Y, Chen Y, Zhu X, Feng H, Zhang C. Transcriptome Profile of Fusarium graminearum Treated by Putrescine. J Fungi (Basel) 2022; 9:jof9010060. [PMID: 36675881 PMCID: PMC9865016 DOI: 10.3390/jof9010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Fusarium graminearum (F. graminearum) is the main pathogen of Fusarium head blight (FHB) in wheat, barley, and corn. Deoxynivalenol (DON), produced by F. graminearum, is the most prevalent toxin associated with FHB. The wheat defense compound putrescine can promote DON production during F. graminearum infection. However, the underlying mechanisms of putrescine-induced DON synthesis are not well-studied. To investigate the effect of putrescine on the global transcriptional regulation of F. graminearum, we treated F. graminearum with putrescine and performed RNA deep sequencing. We found that putrescine can largely affect the transcriptome of F. graminearum. Gene ontology (GO) and KEGG enrichment analysis revealed that having a large amount of DEGs was associated with ribosome biogenesis, carboxylic acid metabolism, glycolysis/gluconeogenesis, and amino acid metabolism pathways. Co-expression analysis showed that 327 genes had similar expression patterns to FgTRI genes and were assigned to the same module. In addition, three transcription factor genes were identified as hub genes in this module, indicating that they may play important roles in DON synthesis. These results provide important clues for further analysis of the molecular mechanisms of putrescine-induced DON synthesis and will facilitate the study of the pathogenic mechanisms of FHB.
Collapse
Affiliation(s)
- Lina Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xiying Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (H.F.); (C.Z.)
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (H.F.); (C.Z.)
| |
Collapse
|
3
|
Falter C, Reumann S. The essential role of fungal peroxisomes in plant infection. MOLECULAR PLANT PATHOLOGY 2022; 23:781-794. [PMID: 35001508 PMCID: PMC9104257 DOI: 10.1111/mpp.13180] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/09/2023]
Abstract
Several filamentous fungi are ecologically and economically important plant pathogens that infect a broad variety of crops. They cause high annual yield losses and contaminate seeds and fruits with mycotoxins. Not only powerful infection structures and detrimental toxins, but also cell organelles, such as peroxisomes, play important roles in plant infection. In this review, we summarize recent research results that revealed novel peroxisomal functions of filamentous fungi and highlight the importance of peroxisomes for infection of host plants. Central for fungal virulence are two primary metabolic pathways, fatty acid β-oxidation and the glyoxylate cycle, both of which are required to produce energy, acetyl-CoA, and carbohydrates. These are ultimately needed for the synthesis of cell wall polymers and for turgor generation in infection structures. Most novel results stem from different routes of secondary metabolism and demonstrate that peroxisomes produce important precursors and house various enzymes needed for toxin production and melanization of appressoria. All these peroxisomal functions in fungal virulence might represent elegant targets for improved crop protection.
Collapse
Affiliation(s)
- Christian Falter
- Plant Biochemistry and Infection BiologyInstitute of Plant Science and MicrobiologyUniversität HamburgHamburgGermany
| | - Sigrun Reumann
- Plant Biochemistry and Infection BiologyInstitute of Plant Science and MicrobiologyUniversität HamburgHamburgGermany
| |
Collapse
|
4
|
Tini F, Beccari G, Marconi G, Porceddu A, Sulyok M, Gardiner DM, Albertini E, Covarelli L. Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells 2021; 10:cells10051192. [PMID: 34068122 PMCID: PMC8152758 DOI: 10.3390/cells10051192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
- Correspondence:
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Micheal Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse, 20, A-3430 Tulln, Austria;
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| |
Collapse
|
5
|
MXene-Based Aptasensor: Characterization and High-Performance Voltammetry Detection of Deoxynivalenol. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00847-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zhang X, Wang H, Zhu W, Li W, Wang F. Transcriptome Analysis Reveals the Effects of Chinese Chive (Allium tuberosum R.) Extract on Fusarium oxysporum f. sp. radicis-lycopersici Spore Germination. Curr Microbiol 2020; 77:855-864. [PMID: 31932997 DOI: 10.1007/s00284-020-01875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Fusarium oxysporum f. sp. radicis-lycopersici (Forl) causes Fusarium crown and root rot of tomato, leading to severe yield losses. Chinese chive and the Chinese chive extract reportedly have antifungal effects. In this study, Chinese chive extract treatments inhibited Forl spore germination, with an EC50 of 0.40 g ml-1 in vitro. Furthermore, the mechanism underlying the fungicidal effects of the Chinese chive extract was analyzed by RNA sequencing. A total of 1252 differentially expressed genes (DEGs) were detected, of which 396 were upregulated and 856 were downregulated. The DEGs were related to starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, galactose metabolism, fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, peroxisomes, ribosome biogenesis in eukaryotes, mismatch repair, and the phosphatidylinositol signaling system, implying these pathways contribute to the fungicidal activity of the Chinese chive extract. The qRT-PCR results verified the accuracy of the RNA sequencing data. Thus, the Chinese chive extract can inhibit Forl spore germination by affecting spore nutrient metabolism.
Collapse
Affiliation(s)
- Xiu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenying Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenli Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus ( Citrus reticulata Blanco). Microorganisms 2019; 7:microorganisms7110485. [PMID: 31652932 PMCID: PMC6920975 DOI: 10.3390/microorganisms7110485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023] Open
Abstract
Green mold disease, a common citrus post-harvest disease caused by Penicillium digitatum, has an unresolved initial infection mechanism. Understanding the infection mechanism leads to the development of potential controls and preventive measures against the disease. The present study aimed to delineate the infection mechanism by investigating spore germination, changes of organic molecules and enzyme activity, and differential expression of genes in the P. digitatum infection. P. digitatum spore germination was observed by a pathology section scanner and it was found that in vivo germination was 3 h behind the in vitro germination. In addition, cell wall degrading enzymes and soluble sugar and titratable acid content during the infection process measured dynamically. The level of pectinase reached its maximum of 6067 U/g before 48 hpi, while cellulase increased rapidly after 48 hpi. The soluble sugar and organic acid content increased considerably with the progression of the infection. The transcriptomic profile of P. digitatum before and after infection was analyzed by RNA-seq. The genes related to cell wall degrading enzymes were significantly up-regulated and annotated to participate in two major carbon source synthesis pathways. The study delineated the initial infection mechanism of P. digitatum which eventually opened the gate way for the development of new control strategies in the future.
Collapse
|
8
|
Wang K, Zheng X, Yang Q, Zhang H, Apaliya MT, Dhanasekaran S, Zhang X, Zhao L, Li J, Jiang Z. S-Adenosylmethionine-Dependent Methyltransferase Helps Pichia caribbica Degrade Patulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11758-11768. [PMID: 31577438 DOI: 10.1021/acs.jafc.9b05144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 μg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.
Collapse
Affiliation(s)
| | - Xiangfeng Zheng
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225009 , Jiangsu , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hassan ZU, Al Thani R, Balmas V, Migheli Q, Jaoua S. Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Davoudi Moghadam H, Shahidi F, Tabatabaei Yazdi F, Sarabi Jamab M, Eshaghi Z. Biological detoxification of Monascus purpureus pigments by heat-treated Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4439-4444. [PMID: 30866050 DOI: 10.1002/jsfa.9680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Today, there is an increasing concern about the consumption of synthetic colorants in food because of their possible health hazards. Monascus purpureus has attracted a great deal of attention as it produces various coloured pigments with high chemical stability, but it also produces citrinin, a secondary toxic metabolite, along with the pigments. This study aims to investigate the amount of pigment and citrinin reduction by different treatments with Saccharomyces cerevisiae such as heat treatment and suspension concentration. RESULTS The results indicated that the ability of S. cerevisiae regarding citrinin adsorption increased with increase of temperature and yeast concentration. The maximum extent of citrinin adsorption was related to heat treatment at 121 °C and a yeast concentration of 105 cells mL-1 , for which citrinin reduced from 4.43 mg L-1 in control to 0.1 mg L-1 . Heat treatment of 103 cells mL-1 suspension of S. cerevisiae cells at 50 °C, with 0.56 mg L-1 citrinin remaining in the medium, showed the lowest ability for citrinin binding. The optimum absorbance of all red, orange and yellow pigments was observed for the heat treatment at 50 °C and yeast concentrations of 103 and 104 cells mL-1 which was greater than that for the control. CONCLUSIONS We can conclude from this study that heat treatment with S. cerevisiae can be a useful way to reduce citrinin to below the standard limits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Fakhri Shahidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mahboobe Sarabi Jamab
- Department of Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Zarrin Eshaghi
- Department of Chemistry, Payame Noor University, Mashhad, Iran
| |
Collapse
|
11
|
Wang K, Lin Z, Zhang H, Zhang X, Zheng X, Zhao L, Yang Q, Ahima J, Boateng NAS. Investigating proteome and transcriptome response of Cryptococcus podzolicus Y3 to citrinin and the mechanisms involved in its degradation. Food Chem 2019; 283:345-352. [PMID: 30722882 DOI: 10.1016/j.foodchem.2019.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/16/2018] [Accepted: 01/13/2019] [Indexed: 11/28/2022]
Abstract
Citrinin (CIT) contamination has been reported in agricultural foods and is known to be nephrotoxic to human and animals. In the present study, the proteomes and transcriptomes of C. podzolicus Y3 treated with or without 10 μg/mL CIT were compared by two-dimensional electrophoresis (2-DE) and RNA sequencing, respectively. The proteomics results showed that there were 23 differentially expressed proteins (DEPs), 8 DEPs were up-regulated and 15 DEPs were significantly down-regulated. Transcriptomic analysis showed that 1208 genes were differentially expressed, 551 (43.05%) DEGs were up regulated and 657 (56.95%) were down-regulated. These results showed that the CIT treatment caused DNA damage, oxidative stress and cell apoptosis in C. podzolicus Y3. CIT treatment also activated the defense response (DNA repair and drug resistance biological process, antioxidative activity and TCA cycle) as well as drug metabolism (synthesize the CIT-degrading enzymes) in yeast cells to respond to CIT stress and degrade CIT.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Zhen Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Joseph Ahima
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Nana Adwoa Serwah Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Transcriptome Analysis Reveals the Mechanism of Fungicidal of Thymol Against Fusarium oxysporum f. sp. niveum. Curr Microbiol 2017; 75:410-419. [DOI: 10.1007/s00284-017-1396-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/11/2017] [Indexed: 01/21/2023]
|