1
|
Al-Tamimi M, Qiao J, Gardiner EE. The utility of platelet activation biomarkers in thrombotic microangiopathies. Platelets 2022; 33:503-511. [PMID: 35287530 DOI: 10.1080/09537104.2022.2026912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary thrombotic microangiopathies (TMAs) are observed in thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), while secondary TMAs have a wide range of etiologies. Early diagnosis and treatment of TMA are critical for patient well-being; however, distinguishing TTP from HUS on presentation is particularly challenging. Thrombocytopenia and platelet activation are central to different types of TMAs, thus limiting the utility of standard diagnostic approaches to evaluate the platelet function and hemostatic capacity. Alternative means of quantifying and monitoring changes to platelet activation and function are urgently needed. Activated platelets have been shown to interact with proteins of the complement and coagulation cascades and form part of inflammation processes engaged in TMA. Increased levels of platelet surface receptors as well as increased plasma levels of platelet-derived soluble proteins have been reported in TMAs. Elevated levels of platelet-leukocyte aggregates and platelet microparticles are also reported in different types of TMAs. Larger prospective evaluations of platelet activation markers in TMA using standardized assays, with comparison to cohorts of patients with thrombosis, coagulopathy, and thrombocytopenia, to evaluate the clinical usefulness of platelet markers in TMA are now needed. This review will summarize the current knowledge around platelet activation markers and critically evaluate their utility in diagnosis and prognosis of TMA patients.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Sereni L, Castiello MC, Di Silvestre D, Della Valle P, Brombin C, Ferrua F, Cicalese MP, Pozzi L, Migliavacca M, Bernardo ME, Pignata C, Farah R, Notarangelo LD, Marcus N, Cattaneo L, Spinelli M, Giannelli S, Bosticardo M, van Rossem K, D'Angelo A, Aiuti A, Mauri P, Villa A. Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2019; 144:825-838. [PMID: 30926529 PMCID: PMC6721834 DOI: 10.1016/j.jaci.2019.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Background Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. Objective We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. Methods We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. Results We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. Conclusions Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia.
Collapse
Affiliation(s)
- Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Patrizia Della Valle
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Loris Pozzi
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Roula Farah
- Department of Pediatrics, Division of Hematology-Oncology, Saint George Hospital University Medical Centre, Beirut, Lebanon
| | - Lucia Dora Notarangelo
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Nufar Marcus
- Department of Pediatrics, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Marco Spinelli
- Pediatric Clinic, MBBM Foundation, Maria Letizia Verga Center, Monza, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Koen van Rossem
- Rare Diseases Unit, GlaxoSmithKline, Brentford, United Kingdom
| | - Armando D'Angelo
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.
| |
Collapse
|
4
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|