1
|
de Almeida Schneider R, Barros Terraciano P, Zanon P, Quandt L, Zanini Gotardi DH, Alves Garcez TN, Santi L, Beys da Silva WO, Sereno Montenegro I, Yates J, Almeida Guimarães J, Pandolfi Passos E, Berger M. Mechanisms involved in the cytoprotective effects of Lonomia obliqua venom on human endometrial stromal cells. Toxicon 2024; 240:107630. [PMID: 38342412 DOI: 10.1016/j.toxicon.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The pathophysiology of recurrent pregnancy loss (RPL) involves deficiencies in the proliferation and migration capacities of endometrial stromal cells (hESCs), which impair embryo implantation and development. Since animal venoms are rich source of bioactive molecules, we aimed to characterize the cytoprotective effects of Lonomia obliqua venom on hESCs. hESCs were isolated from endometrial biopsies and the mechanisms of L. obliqua venomous secretions on cell viability, proliferation and migration were characterized. Venom components were identified by chromatography and proteomic analyses. L. obliqua venom induced hESC proliferation, viability and migration in a dose-dependent manner, both in the presence and absence of serum. By ion-exchange chromatography, one fraction enriched in cytoprotective components and devoid of hemotoxins was obtained. Venom proteome identified at least six protein classes with potential cytoprotective properties (hemolins, lipocalins, hemocyannins, antiviral proteins, antimicrobial peptides, and protease inhibitors). L. obliqua venom protected hESCs from oxidative insult. Cytoprotection was also related to nitric oxide and PKC-ERK-activation and down-regulation of cAMP-PKA-dependent pathways that control cell proliferation. L. obliqua venom-induced hESC viability, proliferation and migration occurs mainly by protecting against oxidative damage and activating ERK. Thus, L. obliqua venom components are promising pharmacological tools to understand the underlying mechanisms of hESC deficiency in RPL.
Collapse
Affiliation(s)
- Raquel de Almeida Schneider
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Debora Helena Zanini Gotardi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys da Silva
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivan Sereno Montenegro
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jorge Almeida Guimarães
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Moraes JA, Rodrigues G, Guimarães-Bastos D, Nascimento-Silva V, Svensjö E, Renovato-Martins M, Berger M, Guimarães J, Barja-Fidalgo C. Effect of Lonomia obliqua Venom on Human Neutrophils. Toxins (Basel) 2021; 13:toxins13120908. [PMID: 34941745 PMCID: PMC8707409 DOI: 10.3390/toxins13120908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The significant incidence of deforestation in South America culminates in the contact of humans with typical forests species. Among these species, one may highlight Lonomia obliqua caterpillar, which, when touched by humans, can poison them through their bristles. Therefore, better acknowledging the mechanisms involved in envenomation caused by Lonomia obliqua caterpillar bristle extract (LOCBE) may contribute to further treatments. Recently, we demonstrated that LOCBE induces a pro-inflammatory profile in endothelial cells; thus, we decided to investigate the effects of LOCBE on human polymorphonuclear neutrophils (PMN), which are the first leukocytes that migrate to the inflammatory focus. Our results showed that treatment with LOCBE induced PMN chemotaxis together with alterations in actin cytoskeleton and focal adhesion kinase (FAK) activation, favoring migration. Concurrently, LOCBE induced PMN adhesion to matrix proteins, such as collagen IV, fibronectin, and fibrinogen. Moreover, we observed that LOCBE attenuated PMN apoptosis and increased reactive oxygen species (ROS) production together with nuclear factor kB (NF-κB) activation—a redox-sensitive transcription factor—as well as interleukin (IL)-1β and IL-8 release. We call attention to the ROS-dependent effect of LOCBE on increased cell migration once an antioxidant treatment reverted it. In summary, we report that LOCBE activates PMN, inducing pro-inflammatory responses modulated by ROS.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
- Correspondence:
| | - Genilson Rodrigues
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (G.R.); (V.N.-S.)
| | - Daniel Guimarães-Bastos
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
| | - Vany Nascimento-Silva
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (G.R.); (V.N.-S.)
| | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Mariana Renovato-Martins
- Laborotário de Imunologia e Metabolismo, Universidade Federal Fluminense, Niterói 22410-201, Brazil;
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-003, Brazil; (M.B.); (J.G.)
| | - Jorge Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-003, Brazil; (M.B.); (J.G.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
| |
Collapse
|
3
|
Lonomia obliqua Envenoming and Innovative Research. Toxins (Basel) 2021; 13:toxins13120832. [PMID: 34941670 PMCID: PMC8706654 DOI: 10.3390/toxins13120832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023] Open
Abstract
As a tribute to Butantan Institute in its 120th anniversary, this review describes some of the scientific research efforts carried out in the study of Lonomia envenoming in Brazil, a country where accidents with caterpillars reach over 42,000 individuals per year (especially in South and Southeast Brazil). Thus, the promising data regarding the studies with Lonomia’s toxins contributed to the creation of new research centers specialized in toxinology based at Butantan Institute, as well as to the production of the antilonomic serum (ALS), actions which are in line with the Butantan Institute mission “to research, develop, manufacture, and provide products and services for the health of the population”. In addition, the study of the components of the Lonomia obliqua bristle extract led to the discovery of new molecules with peculiar properties, opening a field of knowledge that could lead to the development and innovation of new drugs aimed at cell regeneration and inflammatory diseases.
Collapse
|
4
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
5
|
Oliveira DS, de Souza JG, Alvarez-Flores MP, Cunegundes PS, DeOcesano-Pereira C, Lobba AM, Gomes RN, Chudzinski-Tavassi AM. Lonomia obliqua Venom Induces NF-κB Activation and a Pro-Inflammatory Profile in THP-1-Derived Macrophage. Toxins (Basel) 2021; 13:462. [PMID: 34209394 PMCID: PMC8309978 DOI: 10.3390/toxins13070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain, an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can cause severe clinical manifestations and death. However, the role of immune system components in these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8 and CXCL10. These results suggest that macrophages can play an important role during the orchestration of the inflammatory response present in envenomation caused by Lonomia obliqua caterpillars.
Collapse
Affiliation(s)
- Douglas Souza Oliveira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Aline Maia Lobba
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| |
Collapse
|
6
|
Zanon P, Pizzato SB, da Rosa RL, Terraciano PB, Moraes JA, Beys-da-Silva WO, Santi L, Yates JR, Passos EP, Barja-Fidalgo C, Guimarães JA, Berger M. Urine proteomic analysis reveals alterations in heme/hemoglobin and aminopeptidase metabolism during Lonomia obliqua venom-induced acute kidney injury. Toxicol Lett 2021; 341:11-22. [PMID: 33472085 DOI: 10.1016/j.toxlet.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
AIMS Accidental contact with the Lonomia obliqua caterpillar is a common event in southern Brazil. Envenomed victims present consumption coagulopathy, which can evolve to acute kidney injury (AKI). In the present study, we searched for AKI biomarkers and changes in molecular pathway signatures through urine proteomic analysis. METHODOLOGY Male Wistar rats were injected with L. obliqua venom (1.5 mg/kg, via s.c.) or 0.9 % NaCl and distributed into metabolic cages. After 24 h, urine was obtained, and the set of differentially regulated proteins was analyzed by MudPIT technology in an OrbiTRAP mass spectrometer. RESULTS L. obliqua venom leads to an increase in urine output and water and electrolyte excretion and to an increase in the albumin to creatine ratio in urine. The proteomic analysis revealed an up-regulation of tubular injury biomarkers, such as neutrophil-gelatinase associated lipocalin (NGAL) and cystatin C, in urine from envenomed rats. Several components related to the heme scavenging system were up-regulated or exclusively identified in urine from envenomed animals. There was an increase in urinary heme levels and hemoglobin subunits, hemopexin, haptoglobin, and biliverdin reductase. Similarly, kinin- and angiotensin-generating/degrading peptidases, such as kallikreins, neprilysin, plasmin, dipeptidyl peptidase IV, cathepsin D, kininogen, and neutral, basic, glutamyl, and acidic aminopeptidases, were also up-regulated in urine. CONCLUSIONS L. obliqua envenomation induced tubular and glomerular injury, probably involving heme/hemoglobin toxicity and an imbalance in the kinin/angiotensin generating/degrading system.
Collapse
Affiliation(s)
- Pamela Zanon
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Beal Pizzato
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Lopes da Rosa
- Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - João Alfredo Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jonh R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Caterpillar Venom: A Health Hazard of the 21st Century. Biomedicines 2020; 8:biomedicines8060143. [PMID: 32486237 PMCID: PMC7345192 DOI: 10.3390/biomedicines8060143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
Caterpillar envenomation is a global health threat in the 21st century. Every direct or indirect contact with the urticating hairs of a caterpillar results in clinical manifestations ranging from local dermatitis symptoms to potentially life-threatening systemic effects. This is mainly due to the action of bioactive components in the venom that interfere with targets in the human body. The problem is that doctors are limited to relieve symptoms, since an effective treatment is still lacking. Only for Lonomia species an effective antivenom does exist. The health and economical damage are an underestimated problem and will be even more of a concern in the future. For some caterpillar species, the venom composition has been the subject of investigation, while for many others it remains unknown. Moreover, the targets involved in the pathophysiology are poorly understood. This review aims to give an overview of the knowledge we have today on the venom composition of different caterpillar species along with their pharmacological targets. Epidemiology, mode of action, clinical time course and treatments are also addressed. Finally, we briefly discuss the future perspectives that may open the doors for future research in the world of caterpillar toxins to find an adequate treatment.
Collapse
|
8
|
Yao Z, Kamau PM, Han Y, Hu J, Luo A, Luo L, Zheng J, Tian Y, Lai R. The Latoia consocia Caterpillar Induces Pain by Targeting Nociceptive Ion Channel TRPV1. Toxins (Basel) 2019; 11:toxins11120695. [PMID: 31783580 PMCID: PMC6950366 DOI: 10.3390/toxins11120695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Accidental contact with caterpillar bristles causes local symptoms such as severe pain, intense heat, edema, erythema, and pruritus. However, there is little functional evidence to indicate a potential mechanism. In this study, we analyzed the biological characteristics of the crude venom from the larval stage of Latoia consocia living in South-West China. Intraplantar injection of the venom into the hind paws of mice induced severe acute pain behaviors in wild type (WT) mice; the responses were much reduced in TRPV1-deficit (TRPV1 KO) mice. The TRPV1-specific inhibitor, capsazepine, significantly attenuated the pain behaviors. Furthermore, the crude venom evoked strong calcium signals in the dorsal root ganglion (DRG) neurons of WT mice but not those of TRPV1 KO mice. Among the pain-related ion channels we tested, the crude venom only activated the TRPV1 channel. To better understand the venom components, we analyzed the transcriptome of the L. consocia sebaceous gland region. Our study suggests that TRPV1 serves as a primary nociceptor in caterpillar-induced pain and forms the foundation for elucidating the pain-producing mechanism.
Collapse
Affiliation(s)
- Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44, Xiaohongshan, Wuchang District/Huangjin Industrial Park, Zhengdian Street, Jiangxia District, Wuhan 430207, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| |
Collapse
|
9
|
de Jesus Souza M, de Moraes JA, Da Silva VN, Helal-Neto E, Uberti AF, Scopel-Guerra A, Olivera-Severo D, Carlini CR, Barja-Fidalgo C. Helicobacter pylori urease induces pro-inflammatory effects and differentiation of human endothelial cells: Cellular and molecular mechanism. Helicobacter 2019; 24:e12573. [PMID: 30907046 DOI: 10.1111/hel.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Helicobacter pylori urease (HPU) is a key virulence factor that enables bacteria to colonize and survive in the stomach. We early demonstrated that HPU, independent of its catalytic activity, induced inflammatory and angiogenic responses in vivo and directly activated human neutrophils to produce reactive oxygen species (ROS). We have investigated the effects of HPU on endothelial cells, focusing on the signaling mechanism involved. METHODS Monolayers of human microvascular endothelial cells (HMEC-1) were stimulated with HPU (up to 10 nmol/L): Paracellular permeability was accessed through dextran-FITC passage. NO and ROS production was evaluated using intracellular probes. Proteins or mRNA expressions were detected by Western blotting and fluorescence microscopy or qPCR assays, respectively. RESULTS Treatment with HPU enhanced paracellular permeability of HMEC-1, preceded by VE-cadherin phosphorylation and its dissociation from cell-cell junctions. This caused profound alterations in actin cytoskeleton dynamics and focal adhesion kinase (FAK) phosphorylation. HPU triggered ROS and nitric oxide (NO) production by endothelial cells. Increased intracellular ROS resulted in nuclear factor kappa B (NF-κB) activation and upregulated expression of cyclooxygenase-2 (COX-2), hemeoxygenase-1 (HO-1), interleukin-1β (IL-1β), and intercellular adhesion molecule-1 (ICAM-1). Higher ICAM-1 and E-selectin expression was associated with increased neutrophil adhesion on HPU-stimulated HMEC monolayers. The effects of HPU on endothelial cells were dependent on ROS production and lipoxygenase pathway activation, being inhibited by esculetin. Additionally, HPU improved vascular endothelial growth factor receptor 2 (VEGFR-2) expression. CONCLUSION The data suggest that the pro-inflammatory properties of HPU drive endothelial cell to a ROS-dependent program of differentiation that contributes to the progression of H pylori infection.
Collapse
Affiliation(s)
- Mariele de Jesus Souza
- Laboratory of Cellular and Molecular Pharmacology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Alfredo de Moraes
- Laboratory of Cellular and Molecular Pharmacology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Redox Biology, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vany Nascimento Da Silva
- Laboratory of Cellular and Molecular Pharmacology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edward Helal-Neto
- Laboratory of Cellular and Molecular Pharmacology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Frantz Uberti
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriele Scopel-Guerra
- Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Deiber Olivera-Severo
- Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Célia R Carlini
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Center of Biotechnology, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, Dobson J, Fry BG, King GF. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon 2018; 154:15-27. [DOI: 10.1016/j.toxicon.2018.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
|
12
|
Villas-Boas IM, Bonfá G, Tambourgi DV. Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon 2018; 153:39-52. [PMID: 30145232 DOI: 10.1016/j.toxicon.2018.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Envenomation by the larval or pupal stages of moths occurs when the victim presses their hairs. They penetrate the subcutaneous tissue, releasing toxins such as proteolytic enzymes, histamine and other pro-inflammatory substances. Cutaneous reactions, including severe pain, oedema and erythema are frequent local manifestations of caterpillar envenomation, but, in some cases, the reactions can evolve into vesicles, bullae, erosions, petechiae, superficial skin necrosis and ulcerations. Alternatively, some individual can develop allergic reactions, renal failure, osteochondritis, deformity and immobilization of the affected joints and intracerebral bleeding. Caterpillars produce venom to protect themselves from predators; contact with humans is accidental and deserves close attention. Their venoms have not been well studied, except for toxins from some few species. The present review brings together data on venomous caterpillars of moths, primarily addressing the available literature on diversity among the different families that cause accident in humans, the structures used in their defense, venom composition and clinical aspects of the envenomations. Understanding the molecular mechanisms of action of caterpillars' toxins may lead to the development of more adequate treatments.
Collapse
Affiliation(s)
- Isadora Maria Villas-Boas
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Giuliano Bonfá
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Liu M, Lu W, Hou Q, Wang B, Sheng Y, Wu Q, Li B, Liu X, Zhang X, Li A, Zhang H, Xiu R. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells. Microcirculation 2018; 25:e12450. [PMID: 29575333 DOI: 10.1111/micc.12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. METHODS IMECs were treated with 5.6 mmol L-1 glucose, 35 mmol L-1 glucose, and 35 mmol L-1 glucose plus 10-8 mol L-1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. RESULTS Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. CONCLUSIONS Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs.
Collapse
Affiliation(s)
- Mingming Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenbao Lu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Bing Wang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youming Sheng
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingbin Wu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|