1
|
Sarker R, Roknuzzaman ASM, Haque MA, Islam MR, Kabir ER. Upsurge of dengue outbreaks in several WHO regions: Public awareness, vector control activities, and international collaborations are key to prevent spread. Health Sci Rep 2024; 7:e2034. [PMID: 38655420 PMCID: PMC11035754 DOI: 10.1002/hsr2.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Background Dengue, the world's fastest-growing vector-borne disease, has skyrocketed in the 21st century. Dengue has harmed human health since its first known cases among Spanish soldiers in the Philippines to its 21st-century outbreaks in Southeast Asia, the Pacific, and the Americas. In light of the current circumstances, it is imperative to investigate its origin and prevalence, enabling the implementation of effective interventions to curb the upsurge. Methods Our study examines the history of dengue outbreaks, and evolving impact on public health, aiming to offer valuable insights for a more resilient public health response worldwide. In this comprehensive review, we incorporated data from renowned databases such as PubMed, Google Scholar, and Scopus to provide a thorough analysis of dengue outbreaks. Results Recent dengue outbreaks are associated with rapid urbanization, international travel, climatic change, and socioeconomic factors. Rapid urbanization and poor urban design and sanitation have created mosquito breeding places for dengue vectors. Also, international travel and trade have spread the pathogen. Climate change in the past two decades has favored mosquito habitats and outbreaks. Socioeconomic differences have also amplified the impact of dengue outbreaks on vulnerable communities. Dengue mitigation requires vector control, community engagement, healthcare strengthening, and international cooperation. Conclusion Climate change adaptation and urban planning are crucial. Although problems remain, a comprehensive vector control and community involvement plan may reduce dengue epidemics and improve public health in our interconnected world.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | | | | | |
Collapse
|
2
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|