1
|
Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Ndiaye M, Balde D, Diagne MM, Faye O, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, de Oliveira T, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307504. [PMID: 38798319 PMCID: PMC11118645 DOI: 10.1101/2024.05.16.24307504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Robert Gifford
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, UK
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa M Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Dieng I, Diarra M, Sadio BD, Sow B, Gaye A, Diallo A, Faye M, Ndione MHD, Diallo D, Sankhe S, Ndiaye M, Danfakha F, Diop B, Sall AA, Fall G, Faye O, Loucoubar C, Faye O, Weaver SC, Diallo M, Barry MA, Diagne MM. Reemergence of Sylvatic Dengue Virus Serotype 2 in Kedougou, Senegal, 2020. Emerg Infect Dis 2024; 30:770-774. [PMID: 38526209 PMCID: PMC10977847 DOI: 10.3201/eid3004.231301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.
Collapse
|
3
|
Dieng I, Talla C, Barry MA, Gaye A, Balde D, Ndiaye M, Kane M, Sagne SN, Diagne MM, Diop B, Diallo B, Sall AA, Faye O, Sow A, Fall G, Loucoubar C, Faye O. The Spatiotemporal Distribution and Molecular Characterization of Circulating Dengue Virus Serotypes/Genotypes in Senegal from 2019 to 2023. Trop Med Infect Dis 2024; 9:32. [PMID: 38393121 PMCID: PMC10891755 DOI: 10.3390/tropicalmed9020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mouhamed Kane
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Moussa Moise Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Boly Diop
- Direction of Prevention, Ministry of Health, Dakar 220, Senegal
| | - Boubacar Diallo
- Department of Public Health, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Abdourahmane Sow
- Department of Public Health, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|
4
|
Dieng I, Balde D, Talla C, Camara D, Barry MA, Sagne SN, Gueye K, Dia CAKM, Sambe BS, Fall G, Sall AA, Faye O, Loucoubar C, Faye O. Molecular Evolution of Dengue Virus 3 in Senegal between 2009 and 2022: Dispersal Patterns and Implications for Prevention and Therapeutic Countermeasures. Vaccines (Basel) 2023; 11:1537. [PMID: 37896941 PMCID: PMC10610876 DOI: 10.3390/vaccines11101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Diogop Camara
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Khadim Gueye
- EMBL’s European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK;
| | - Cheikh Abdou Khadre Mbacké Dia
- Department of Animal Biology, Faculty of Science et Technics, Université Cheikh Anta Diop de Dakar (UCAD), BP 5005 Fann, Dakar, Senegal; (C.A.K.M.D.); (B.S.S.)
| | - Babacar Souleymane Sambe
- Department of Animal Biology, Faculty of Science et Technics, Université Cheikh Anta Diop de Dakar (UCAD), BP 5005 Fann, Dakar, Senegal; (C.A.K.M.D.); (B.S.S.)
| | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| |
Collapse
|
5
|
Padonou GG, Konkon AK, Salako AS, Zoungbédji DM, Ossè R, Sovi A, Azondekon R, Sidick A, Ahouandjinou JM, Adoha CJ, Sominahouin AA, Tokponnon FT, Akinro B, Sina H, Baba-Moussa L, Akogbéto MC. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop Med Infect Dis 2023; 8:439. [PMID: 37755900 PMCID: PMC10535150 DOI: 10.3390/tropicalmed8090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Updated information on the distribution and abundance of Aedes aegypti and Aedes albopictus is crucial to prepare African countries, such as Benin, for possible arboviral disease outbreaks. This study aims to evaluate the geographical distribution, abundance and biting behaviour of these two vectors in Benin. Three sampling techniques were used in this study. The collection of Aedes spp. adults were made through human landing catch (HLC), immatures were captured with the use of ovitraps, and a dipping technique was used for the collection of Aedes spp. in 23 communes located along the North-South and East-West transect of Benin. Adult Aedes mosquitoes were collected indoors and outdoors using HLC. Mosquito eggs, larvae and pupae were collected from containers and ovitraps. The adult mosquitoes were morphologically identified, then confirmed using a polymerase chain reaction (PCR). Overall, 12,424 adult specimens of Aedes spp. were collected, out of which 76.53% (n = 9508) and 19.32% (n = 2400) were morphologically identified as Ae. aegypti and Ae. albopictus, respectively. Geographically, Ae. aegypti was found across the North-South transect unlike Ae. albopictus, which was only encountered in the southern part of the country, with a great preponderance in Avrankou. Furthermore, an exophagic behaviour was observed in both vectors. This updated distribution of Aedes mosquito species in Benin will help to accurately identify areas that are at risk of arboviral diseases and better plan for future vector control interventions.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- École de Gestion et d’Exploitation des Systèmes d’Élevage, Université Nationale d’Agriculture de Porto-Novo, Porto-Novo 01 BP 55, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, The London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Juvénal Minassou Ahouandjinou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Constantin Jesukèdè Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Filémon Tatchémè Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Martin Codjo Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| |
Collapse
|
6
|
Tian L, Liang C, Huang X, Liu Z, Su J, Guo C, Zhu G, Sun J. Genomic epidemiology of dengue in Shantou, China, 2019. Front Public Health 2023; 11:1035060. [PMID: 37522010 PMCID: PMC10374217 DOI: 10.3389/fpubh.2023.1035060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives Dengue has been endemic in Southeast Asian countries for decades. There are few reports tracing the dynamics of dengue in real time. In this study, we generated hundreds of pathogen genomes to understand the genomic epidemiology of an outbreak in a hyper-endemic area of dengue. Methods We leveraged whole-genome short-read sequencing (PE150) to generate genomes of the dengue virus and investigated the genomic epidemiology of a dengue virus transmission in a mesoscale outbreak in Shantou, China, in 2019. Results The outbreak was sustained from July to December 2019. The total accumulated number of laboratory-confirmed cases was 944. No gender bias or fatalities were recorded. Cambodia and Singapore were the main sources of imported dengue cases (74.07%, n = 20). A total of 284 dengue virus strains were isolated, including 259 DENV-1, 24 DENV-2, and 1 DENV-3 isolates. We generated the entire genome of 252 DENV isolates (229 DENV-1, 22 DENV-2, and 1 DENV-3), which represented 26.7% of the total cases. Combined epidemiological and phylogenetic analyses indicated multiple independent introductions. The internal transmission evaluations and transmission network reconstruction supported the inference of phylodynamic analysis, with high Bayes factor support in BSSVS analysis. Two expansion founders and transmission chains were detected in CCH and LG of Shantou. Conclusions We observed the instant effects of genomic epidemiology in monitoring the dynamics of DENV and highlighted its prospects for real-time tracing of outbreaks of other novel agents in the future.
Collapse
Affiliation(s)
- Lina Tian
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
| | - Chumin Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaorong Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Juan Su
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chuan Guo
- Center for Disease Control and Prevention of Shantou City, Shantou, Guangdong, China
| | - Guanghu Zhu
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Provincial Institute of Public Health, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Konkon AK, Padonou GG, Osse R, Salako AS, Zoungbédji DM, Sina H, Sovi A, Tokponnon F, Aïkpon R, Noukpo H, Baba-Moussa L, Akogbéto MC. Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in southern Benin, West Africa. Trop Med Health 2023; 51:22. [PMID: 37085936 PMCID: PMC10122308 DOI: 10.1186/s41182-023-00514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The emergence of insecticide resistance in Aedes mosquitoes could undermine efforts to control arboviruses. The present study aims to assess in some communes of Southern Benin, the susceptibility level of Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) to insecticides commonly used in public health, as well as mechanisms involved. METHODS Females Ae. albopictus and Ae. aegypti collected in Ifangni, Porto-Novo, Avrankou, Adjarra and Kétou from June 2021 to October 2022, were exposed to: deltamethrin 0.05%, permethrin 0.75%, alpha-cypermethrin 0.05%, pirimiphos methyl 0.25% and bendiocarb 0.1%, following the standard WHO susceptibility tube test protocol. In some sites, pre-exposure to the synergist PBO was used to verify if pyrethroid resistance of populations of Aedes was mediated by oxidases. RESULTS Full susceptibility to deltamethrin and permethrin was observed in all tested populations of Ae. albopictus. However, with alphacypermethrin, a suspected resistance was observed in Adjarra (94.67%), Ifangni (93%) and Porto-Novo (94%), and a resistance in Avrankou (83%). The PBO-alphacypermethrin tests performed, led to a full susceptibility (100%) in all four sites, which confirms the full involvement of oxidases in resistance of all tested populations of Ae. albopictus to alphacypermethrin. At the opposite, Aedes aegypti was either resistant or suspected of being resistant to all tested pyrethroids in all four sites, except in Ifangni where a full susceptibility to alphacypermethrin was observed. The full susceptibility of Ae. aegypti to bendiocarb and pirimiphos-methyl in all communes suggests that these two insecticides can be good candidates for an effective control of pyrethroid-resistant Aedes vector populations. Use of permethrin and deltamethrin could also be considered for controlling populations of Ae. albopictus. CONCLUSION Results of the present study will help guide strategy to implement for an effective control of Aedes vector populations in Benin.
Collapse
Affiliation(s)
- Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- École de Gestion et d’exploitation des Systèmes d’élevage de l’Université Nationale d’Agriculture de Porto-Novo, Porto-Novo, Benin
| | | | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Haziz Sina
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Filemon Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Rock Aïkpon
- Ministère de la Santé, 08 BP 882, Cotonou, Benin
- Université Nationale des Sciences, Technologies, Ingénierie Et Mathématiques (UNSTIM), Abomey, Benin
| | - Herbert Noukpo
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|