1
|
den Boon JA, Nishikiori M, Zhan H, Ahlquist P. Positive-strand RNA virus genome replication organelles: structure, assembly, control. Trends Genet 2024; 40:681-693. [PMID: 38724328 DOI: 10.1016/j.tig.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 08/09/2024]
Abstract
Positive-strand RNA [(+)RNA] viruses include pandemic SARS-CoV-2, tumor-inducing hepatitis C virus, debilitating chikungunya virus (CHIKV), lethal encephalitis viruses, and many other major pathogens. (+)RNA viruses replicate their RNA genomes in virus-induced replication organelles (ROs) that also evolve new viral species and variants by recombination and mutation and are crucial virus control targets. Recent cryo-electron microscopy (cryo-EM) reveals that viral RNA replication proteins form striking ringed 'crowns' at RO vesicle junctions with the cytosol. These crowns direct RO vesicle formation, viral (-)RNA and (+)RNA synthesis and capping, innate immune escape, and transfer of progeny (+)RNA genomes into translation and encapsidation. Ongoing studies are illuminating crown assembly, sequential functions, host factor interactions, etc., with significant implications for control and beneficial uses of viruses.
Collapse
Affiliation(s)
- Johan A den Boon
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Masaki Nishikiori
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Hong Zhan
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Paul Ahlquist
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
2
|
Singh K, Mehta D, Dumka S, Chauhan AS, Kumar S. Quasispecies Nature of RNA Viruses: Lessons from the Past. Vaccines (Basel) 2023; 11:308. [PMID: 36851186 PMCID: PMC9963406 DOI: 10.3390/vaccines11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV), lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus populations are a daunting challenge for the designing of effective control measures like vaccines. Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what influences their adaptation and virulence will help curtail outbreaks of past and future pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
4
|
Farooq T, Hussain MD, Shakeel MT, Riaz H, Waheed U, Siddique M, Shahzadi I, Aslam MN, Tang Y, She X, He Z. Global genetic diversity and evolutionary patterns among Potato leafroll virus populations. Front Microbiol 2022; 13:1022016. [PMID: 36590416 PMCID: PMC9801716 DOI: 10.3389/fmicb.2022.1022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Potato leafroll virus (PLRV) is a widespread and one of the most damaging viral pathogens causing significant quantitative and qualitative losses in potato worldwide. The current knowledge of the geographical distribution, standing genetic diversity and the evolutionary patterns existing among global PLRV populations is limited. Here, we employed several bioinformatics tools and comprehensively analyzed the diversity, genomic variability, and the dynamics of key evolutionary factors governing the global spread of this viral pathogen. To date, a total of 84 full-genomic sequences of PLRV isolates have been reported from 22 countries with most genomes documented from Kenya. Among all PLRV-encoded major proteins, RTD and P0 displayed the highest level of nucleotide variability. The highest percentage of mutations were associated with RTD (38.81%) and P1 (31.66%) in the coding sequences. We detected a total of 10 significantly supported recombination events while the most frequently detected ones were associated with PLRV genome sequences reported from Kenya. Notably, the distribution patterns of recombination breakpoints across different genomic regions of PLRV isolates remained variable. Further analysis revealed that with exception of a few positively selected codons, a major part of the PLRV genome is evolving under strong purifying selection. Protein disorder prediction analysis revealed that CP-RTD had the highest percentage (48%) of disordered amino acids and the majority (27%) of disordered residues were positioned at the C-terminus. These findings will extend our current knowledge of the PLRV geographical prevalence, genetic diversity, and evolutionary factors that are presumably shaping the global spread and successful adaptation of PLRV as a destructive potato pathogen to geographically isolated regions of the world.
Collapse
Affiliation(s)
- Tahir Farooq
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hasan Riaz
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yafei Tang
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Xiaoman She
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China,*Correspondence: Xiaoman She, ; Zifu He,
| | - Zifu He
- Guangdong Academy of Agricultural Sciences, Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China,*Correspondence: Xiaoman She, ; Zifu He,
| |
Collapse
|
5
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
6
|
Umar M, Tegg RS, Farooq T, Thangavel T, Wilson CR. Abundance of Poleroviruses within Tasmanian Pea Crops and Surrounding Weeds, and the Genetic Diversity of TuYV Isolates Found. Viruses 2022; 14:1690. [PMID: 36016314 PMCID: PMC9416036 DOI: 10.3390/v14081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/08/2023] Open
Abstract
The genus Polerovirus contains positive-sense, single-stranded RNA plant viruses that cause significant disease in many agricultural crops, including vegetable legumes. This study aimed to identify and determine the abundance of Polerovirus species present within Tasmanian pea crops and surrounding weeds that may act as virus reservoirs. We further sought to examine the genetic diversity of TuYV, the most commonly occurring polerovirus identified. Pea and weed samples were collected during 2019-2020 between October and January from thirty-four sites across three different regions (far northwest, north, and midlands) of Tasmania and tested by RT-PCR assay, with selected samples subject to next-generation sequencing. Results revealed that the presence of polerovirus infection and the prevalence of TuYV in both weeds and pea crops varied across the three Tasmanian cropping regions, with TuYV infection levels in pea crops ranging between 0 and 27.5% of tested plants. Overall, two species members from each genus, Polerovirus and Potyvirus, one member from each of Luteovirus, Potexvirus, and Carlavirus, and an unclassified virus from the family Partitiviridae were also found as a result of NGS data analysis. Analysis of gene sequences of the P0 and P3 genes of Tasmanian TuYV isolates revealed substantial genetic diversity within the collection, with a few isolates appearing more closely aligned with BrYV isolates. Questions remain around the differentiation of TuYV and BrYV species. Phylogenetic inconsistency in the P0 and P3 ORFs supports the concept that recombination may have played a role in TuYV evolution in Tasmania. Results of the evolutionary analysis showed that the selection pressure was higher in the P0 gene than in the P3 gene, and the majority of the codons for each gene are evolving under purifying selection. Future full genome-based analyses of the genetic variations will expand our understanding of the evolutionary patterns existing among TuYV populations in Tasmania.
Collapse
Affiliation(s)
- Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tamilarasan Thangavel
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
- Department of Agriculture and Fisheries (Queensland), Bundaberg Research Facility, 49 Ashfield Road, Bundaberg, QLD 4670, Australia
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| |
Collapse
|
7
|
Nishikiori M, den Boon JA, Unchwaniwala N, Ahlquist P. Crowning Touches in Positive-Strand RNA Virus Genome Replication Complex Structure and Function. Annu Rev Virol 2022; 9:193-212. [PMID: 35610038 DOI: 10.1146/annurev-virology-092920-021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Masaki Nishikiori
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current affiliation: Assembly Biosciences, Inc., South San Francisco, California, USA
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Umar M, Farooq T, Tegg RS, Thangavel T, Wilson CR. Genomic Characterisation of an Isolate of Brassica Yellows Virus Associated with Brassica Weed in Tasmania. PLANTS (BASEL, SWITZERLAND) 2022; 11:884. [PMID: 35406863 PMCID: PMC9003488 DOI: 10.3390/plants11070884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Brassica yellows virus (BrYV), a tentative species in the genus Polerovirus, of the Solemoviridae family, is a phloem-restricted and aphid-transmitted virus with at least three genotypes (A, B, and C). It has been found across mainland China, South Korea, and Japan. BrYV was previously undescribed in Tasmania, and its genetic variability in the state remains unknown. Here, we describe a near-complete genome sequence of BrYV (genotype A) isolated from Raphanus raphanistrum in Tasmania using next-generation sequencing and sanger sequencing of RT-PCR products. BrYV-Tas (GenBank Accession no. OM469309) possesses a genome of 5516 nucleotides (nt) and shares higher sequence identity (about 90%) with other BrYV isolates. Phylogenetic analyses showed variability in the clustering patterns of the individual genes of BrYV-Tas. Recombination analysis revealed beginning and ending breakpoints at nucleotide positions 1922 to 5234 nt, with the BrYV isolate LC428359 and BrYV isolate KY310572 identified as major and minor parents, respectively. Results of the evolutionary analysis showed that the majority of the codons for each gene are evolving under purifying selection, though a few codons were also detected to have positive selection pressure. Taken together, our findings will facilitate an understanding of the evolutionary dynamics and genetic diversity of BrYV.
Collapse
Affiliation(s)
- Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tamilarasan Thangavel
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
- Department of Agriculture and Fisheries (Queensland), Bundaberg Research Facility, 49 Ashfield Road, Bundaberg, QLD 4670, Australia
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| |
Collapse
|
9
|
LaTourrette K, Holste NM, Garcia-Ruiz H. Polerovirus genomic variation. Virus Evol 2021; 7:veab102. [PMID: 35299789 PMCID: PMC8923251 DOI: 10.1093/ve/veab102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract
The polerovirus (family Solemoviridae, genus Polerovirus) genome consists of single-, positive-strand RNA organized in overlapping open reading frames (ORFs) that, in addition to others, code for protein 0 (P0, a gene silencing suppressor), a coat protein (CP, ORF3), and a read-through domain (ORF5) that is fused to the CP to form a CP-read-through (RT) protein. The genus Polerovirus contains twenty-six virus species that infect a wide variety of plants from cereals to cucurbits, to peppers. Poleroviruses are transmitted by a wide range of aphid species in the genera Rhopalosiphum, Stiobion, Aphis, and Myzus. Aphid transmission is mediated both by the CP and by the CP-RT. In viruses, mutational robustness and structural flexibility are necessary for maintaining functionality in genetically diverse sets of host plants and vectors. Under this scenario, within a virus genome, mutations preferentially accumulate in areas that are determinants of host adaptation or vector transmission. In this study, we profiled genomic variation in poleroviruses. Consistent with their multifunctional nature, single-nucleotide variation and selection analyses showed that ORFs coding for P0 and the read-through domain within the CP-RT are the most variable and contain the highest frequency of sites under positive selection. An order/disorder analysis showed that protein P0 is not disordered. In contrast, proteins CP-RT and virus protein genome-linked (VPg) contain areas of disorder. Disorder is a property of multifunctional proteins with multiple interaction partners. The results described here suggest that using contrasting mechanisms, P0, VPg, and CP-RT mediate adaptation to host plants and to vectors and are contributors to the broad host and vector range of poleroviruses. Profiling genetic variation across the polerovirus genome has practical applications in diagnostics, breeding for resistance, and identification of susceptibility genes and contributes to our understanding of virus interactions with their host, vectors, and environment.
Collapse
Affiliation(s)
- Katherine LaTourrette
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
- Complex Biosystems Interdisciplinary Life Sciences Program, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 2200 Vine Street, Lincoln, NE 68583, USA
| | - Natalie M Holste
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| | - Hernan Garcia-Ruiz
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| |
Collapse
|
10
|
Santiago E, Caballero A. The value of targeting recombination as a strategy against coronavirus diseases. Heredity (Edinb) 2020; 125:169-172. [PMID: 32606420 PMCID: PMC7325643 DOI: 10.1038/s41437-020-0337-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Enrique Santiago
- Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | - Armando Caballero
- Centro de Investigación Mariña, Departamento de Bioquímica, Genética e Inmunología, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Universidade de Vigo, Marcosende, 36310, Vigo, Spain
| |
Collapse
|
11
|
Variation Profile of the Orthotospovirus Genome. Pathogens 2020; 9:pathogens9070521. [PMID: 32610472 PMCID: PMC7400459 DOI: 10.3390/pathogens9070521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Orthotospoviruses are plant-infecting members of the family Tospoviridae (order Bunyavirales), have a broad host range and are vectored by polyphagous thrips in a circulative-propagative manner. Because diverse hosts and vectors impose heterogeneous selection constraints on viral genomes, the evolutionary arms races between hosts and their pathogens might be manifested as selection for rapid changes in key genes. These observations suggest that orthotospoviruses contain key genetic components that rapidly mutate to mediate host adaptation and vector transmission. Using complete genome sequences, we profiled genomic variation in orthotospoviruses. Results show that the three genomic segments contain hypervariable areas at homologous locations across species. Remarkably, the highest nucleotide variation mapped to the intergenic region of RNA segments S and M, which fold into a hairpin. Secondary structure analyses showed that the hairpin is a dynamic structure with multiple functional shapes formed by stems and loops, contains sites under positive selection and covariable sites. Accumulation and tolerance of mutations in the intergenic region is a general feature of orthotospoviruses and might mediate adaptation to host plants and insect vectors.
Collapse
|
12
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
13
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. Picornavirus RNA Recombination Counteracts Error Catastrophe. J Virol 2019; 93:e00652-19. [PMID: 31068422 PMCID: PMC6600191 DOI: 10.1128/jvi.00652-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Template-dependent RNA replication mechanisms render picornaviruses susceptible to error catastrophe, an overwhelming accumulation of mutations incompatible with viability. Viral RNA recombination, in theory, provides a mechanism for viruses to counteract error catastrophe. We tested this theory by exploiting well-defined mutations in the poliovirus RNA-dependent RNA polymerase (RDRP), namely, a G64S mutation and an L420A mutation. Our data reveal two distinct mechanisms by which picornaviral RDRPs influence error catastrophe: fidelity of RNA synthesis and RNA recombination. A G64S mutation increased the fidelity of the viral polymerase and rendered the virus resistant to ribavirin-induced error catastrophe, but only when RNA recombination was at wild-type levels. An L420A mutation in the viral polymerase inhibited RNA recombination and exacerbated ribavirin-induced error catastrophe. Furthermore, when RNA recombination was substantially reduced by an L420A mutation, a high-fidelity G64S polymerase failed to make the virus resistant to ribavirin. These data indicate that viral RNA recombination is required for poliovirus to evade ribavirin-induced error catastrophe. The conserved nature of L420 within RDRPs suggests that RNA recombination is a common mechanism for picornaviruses to counteract and avoid error catastrophe.IMPORTANCE Positive-strand RNA viruses produce vast amounts of progeny in very short periods of time via template-dependent RNA replication mechanisms. Template-dependent RNA replication, while efficient, can be disadvantageous due to error-prone viral polymerases. The accumulation of mutations in viral RNA genomes leads to error catastrophe. In this study, we substantiate long-held theories regarding the advantages and disadvantages of asexual and sexual replication strategies among RNA viruses. In particular, we show that picornavirus RNA recombination counteracts the negative consequences of asexual template-dependent RNA replication mechanisms, namely, error catastrophe.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Ouedraogo RS, Pita JS, Somda IP, Traore O, Roossinck MJ. Impact of Cultivated Hosts on the Recombination of Cucumber Mosaic Virus. J Virol 2019; 93:e01770-18. [PMID: 30787159 PMCID: PMC6430555 DOI: 10.1128/jvi.01770-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most successful viruses known, infecting over 1,200 species of plants. Like other single-stranded RNA viruses, CMV is known to have a high potential for population diversity due to error-prone replication and short generation times. Recombination is also a mechanism that allows viruses to adapt to new hosts. Host genes have been identified that impact the recombination of RNA viruses by using single-cell yeast systems. To determine the impact that the natural plant host has on virus recombination, we used a high-recombination-frequency strain of CMV, LS-CMV, which belongs to subgroup II, in three different cultivated hosts: Capsicum annuum cv. Marengo (pepper), Nicotiana tabacum cv. Xanthi nc (tobacco), and Cucurbita pepo cv. Black Beauty (zucchini). The recombination frequency was calculated by using an RNA 3 reporter carrying restriction enzyme sites created by introducing silent mutations. Our results show that the recombination frequency of LS-CMV is correlated with the infected host. The recombination events in pepper were 1.8-fold higher than those in tobacco and 5-fold higher than those in zucchini. Furthermore, we observed the generation of defective RNAs in inoculated pepper plants, but not in tobacco or zucchini. These results indicate that the host is involved in both intra- and intermolecular recombination events and that hosts like pepper could foster more rapid evolution of the virus. In addition, we report for the first time the production of defective RNAs in a CMV subgroup II isolate.IMPORTANCE Recombination is an important mechanism used by viruses for their diversification and to adapt to diverse hosts. Understanding the host role in the mechanisms of evolution is important for virus disease management and controlling the emergence of new strains. This study shows the impact that cultivated hosts are playing in the evolution of CMV. Furthermore, our results and previous studies show how some specific hosts could be an ideal environment for the emergence of new viral strains.
Collapse
Affiliation(s)
- Rimnoma S Ouedraogo
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Justin S Pita
- Université Félix Houphouët-Boigny, Laboratoire de Virologie Végétale, Pôle Scientifique et d'Innovation, Bingerville, Côte d'Ivoire
| | - Irenée P Somda
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
15
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2019; 9:3255. [PMID: 30666247 PMCID: PMC6330349 DOI: 10.3389/fmicb.2018.03255] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G. Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
16
|
Viral Recombination: Ecology, Evolution, and Pathogenesis. Viruses 2018; 10:v10070358. [PMID: 29986376 PMCID: PMC6070879 DOI: 10.3390/v10070358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
|
17
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2018. [PMID: 30666247 DOI: 10.3389/fmicb.2018.03255.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|