1
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
2
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Fu M, Qu Z, Pierre-Pierre N, Jiang D, Souza FL, Miklas PN, Porter LD, Vandemark GJ, Chen W. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by Sclerotinia sclerotiorum. PLANT DISEASE 2024; 108:624-634. [PMID: 37743591 DOI: 10.1094/pdis-07-23-1458-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing white mold on many important economic crops. Recently, some mycoviruses such as S. sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) converted S. sclerotiorum into a beneficial symbiont that helps plants manage pathogens and other stresses. To explore the potential use of SsHADV-1 as a biocontrol agent in the United States and to test the efficacy of SsHADV-1-infected United States isolates in managing white mold and other crop diseases, SsHADV-1 was transferred from the Chinese strain DT-8 to United States isolates of S. sclerotiorum. SsHADV-1 is readily transmitted horizontally among United States isolates of S. sclerotiorum and consistently conferred hypovirulence to its host strains. Biopriming of dry bean seeds with hypovirulent S. sclerotiorum strains enhanced resistance to white mold, gray mold, and Rhizoctonia root rot. To investigate the underlying mechanisms, endophytic growth of hypovirulent S. sclerotiorum in dry beans was confirmed using PCR, and the expression of 12 plant defense-related genes were monitored before and after infection. The results indicated that the endophytic growth of SsHADV-1-infected strains in plants stimulated the expression of plant immunity pathway genes that assisted a rapid response from the plant to fungal infection. Finally, application of the seed biopriming technology with SsHADV-1-infected hypervirulent strain has promise for the biological control of several diseases of wheat, pea, and sunflower.
Collapse
Affiliation(s)
- Min Fu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Qu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nickisha Pierre-Pierre
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fernanda L Souza
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Lyndon D Porter
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - George J Vandemark
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| |
Collapse
|
4
|
Wang Y, Li Q, Wu Y, Han S, Xiao Y, Kong L. The Effects of Mycovirus BmPV36 on the Cell Structure and Transcription of Bipolaris maydis. J Fungi (Basel) 2024; 10:133. [PMID: 38392805 PMCID: PMC10890528 DOI: 10.3390/jof10020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Bipolaris maydis partitivirus 36 (BmPV36) is a mycovirus that can significantly reduce the virulence of the host Bipolaris maydis, but its hypovirulence mechanism is not clear. To investigate the response of B. maydis to BmPV36, the effects of BmPV36 on host cell structure and gene expression were studied via transmission electron microscopy and transcriptome sequencing using BmPV36-carrying and virus-free mycelium on the second and fifth culture. The results of transmission electron microscopy showed that the cell wall microfibrils of B. maydis were shortened, the cell membrane was broken, and membrane-bound vesicles and vacuoles appeared in the cells after carrying BmPV36. Transcriptome sequencing results showed that after carrying BmPV36, B. maydis membrane-related genes were significantly up-regulated, but membrane transport-related genes were significantly down-regulated. Genes related to carbohydrate macromolecule polysaccharide metabolic and catabolic processes were significantly down-regulated, as were genes related to the synthesis of toxins and cell wall degrading enzymes. Therefore, we speculated that BmPV36 reduces the virulence of B. maydis by destroying the host's cell structure, inhibiting the synthesis of toxins and cell wall degrading enzymes, and reducing cell metabolism. Gaining insights into the hypovirulence mechanism of mycoviruses will provide environmentally friendly strategies for the control of fungal diseases.
Collapse
Affiliation(s)
- Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Qiusheng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Ying Xiao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Lingxiao Kong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| |
Collapse
|
5
|
Córdoba L, Ruiz-Padilla A, Pardo-Medina J, Rodríguez-Romero JL, Ayllón MA. Construction of a Mycoviral Infectious Clone for Reverse Genetics in Botrytis cinerea. Methods Mol Biol 2024; 2751:47-68. [PMID: 38265709 DOI: 10.1007/978-1-0716-3617-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The most important advances in our understanding of the viral life cycle, such as genome replication, packaging, transmission, and host interactions, have been made via the development of viral infectious full-length clones. Here, we describe the detailed protocols for the construction of an infectious clone derived from Botrytis virus F (BVF), a mycoflexivirus infecting the plant pathogenic fungus Botrytis cinerea, the determination of the complete sequence of the cloned mycovirus, the preparation of fungal protoplasts, and the transfection of protoplasts using transcripts derived from the BVF infectious clone.
Collapse
Affiliation(s)
- Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Javier Pardo-Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Julio L Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
6
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
7
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
8
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
9
|
Wen Y, Qu J, Zhang H, Yang Y, Huang R, Deng J, Zhang J, Xiao Y, Li J, Zhang M, Wang G, Zhai L. Identification and Characterization of a Novel Hypovirus from the Phytopathogenic Fungus Botryosphaeria dothidea. Viruses 2023; 15:2059. [PMID: 37896836 PMCID: PMC10611357 DOI: 10.3390/v15102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Many mycoviruses have been accurately and successfully identified in plant pathogenic fungus Botryosphaeria dothidea. This study discovered three mycoviruses from a B. dothidea strain SXD111 using high-throughput sequencing technology. A novel hypovirus was tentatively named Botryosphaeria dothidea hypovirus 1 (BdHV1/SXD111). The other two were known viruses, which we named Botryosphaeria dothidea polymycovirus 1 strain SXD111 (BdPmV1/SXD111) and Botryosphaeria dothidea partitivirus 1 strain SXD111 (BdPV1/SXD111). The genome of BdHV1/SXD111 is 11,128 nucleotides long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), a UDP-glucose/sterol glucosyltransferase (UGT), an RNA-dependent RNA polyprotein (RdRp), and a helicase (Hel) were detected in the polyprotein of BdHV1/SXD111. Phylogenetic analysis showed that BdHV1/SXD111 was clustered with betahypovirus and separated from members of the other genera in the family Hypoviridae. The BdPmV1/SXD111 genome comprised five dsRNA segments with 2396, 2232, 1967, 1131, and 1060 bp lengths. Additionally, BdPV1/SXD111 harbored three dsRNA segments with 1823, 1623, and 557 bp lengths. Furthermore, the smallest dsRNA was a novel satellite component of BdPV1/SXD111. BdHV1/SXD111 could be transmitted through conidia and hyphae contact, whereas it likely has no apparent impact on the morphologies and virulence of the host fungus. Thus, this study is the first report of a betahypovirus isolated from the fungus B. dothidea. Importantly, our results significantly enhance the diversity of the B. dothidea viruses.
Collapse
Affiliation(s)
- Yongqi Wen
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jinyue Qu
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Honglin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yi Yang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Rui Huang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jili Deng
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiayu Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yanping Xiao
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiali Li
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Meixin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifeng Zhai
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| |
Collapse
|
10
|
Han Z, Liu J, Kong L, He Y, Wu H, Xu W. A special satellite-like RNA of a novel hypovirus from Pestalotiopsis fici broadens the definition of fungal satellite. PLoS Pathog 2023; 19:e1010889. [PMID: 37285391 DOI: 10.1371/journal.ppat.1010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jiwen Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Linghong Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yunqiang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs; Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
11
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
12
|
Yang D, Shi H, Zhang K, Liu X, Ma L. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea. Int J Food Microbiol 2023; 388:110089. [PMID: 36682298 DOI: 10.1016/j.ijfoodmicro.2023.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes gray mold, a major postharvest disease of fruits and vegetables. Chemical fungicides remain the main solution to control Botrytis disease, but concerns have raised about their safety to environment and human health, and there is an increasing need for development of more effective and less toxic treatments. In this study the divalent cation chelating agent ethylenediaminetetraacetic acid (EDTA) exhibited marked antifungal activity against B. cinerea, including inhibition of spore germination, mycelial growth, infection cushion formation, stimulation of cell death, and impairment of fungal virulence. These adverse effects of EDTA could be reversed by the addition of calcium ion, implying that metal ion chelation is involved in the fungicidal mechanism. Bean leaf and tomato fruit protection assay indicated that EDTA treatment led to a significant reduction of infection by B. cinerea. Furthermore, the antifungal activity of EDTA was significantly enhanced when used in combination with fenhexamid. These findings suggest that EDTA could be a promising tool to control B. cinerea, and application of EDTA may reduce the use of conventional chemical fungicides.
Collapse
Affiliation(s)
- Danting Yang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Haojie Shi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Ke Zhang
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming 650106, PR China
| | - Xunyue Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Liang Ma
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China.
| |
Collapse
|
13
|
Diversity of Mycoviruses Present in Strains of Binucleate Rhizoctonia and Multinucleate Rhizoctonia, Causal Agents for Potato Stem Canker or Black Scurf. J Fungi (Basel) 2023; 9:jof9020214. [PMID: 36836328 PMCID: PMC9967303 DOI: 10.3390/jof9020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, the diversity of putative mycoviruses present in 66 strains of binucleate Rhizoctonia (BNR, including anastomosis group (AG)-A, AG-Fa, AG-K, and AG-W) and 192 strains of multinucleate Rhizoctonia (MNR, including AG-1-IA, AG-2-1, AG-3 PT, AG-4HGI, AG-4HGII, AG-4HGIII, and AG-5), which are the causal agents of potato stem canker or black scurf, was studied using metatranscriptome sequencing. The number of contigs related to mycoviruses identified from BNR and MNR was 173 and 485, respectively. On average, each strain of BNR accommodated 2.62 putative mycoviruses, while each strain of MNR accommodated 2.53 putative mycoviruses. Putative mycoviruses detected in both BNR and MNR contained positive single-stranded RNA (+ssRNA), double-stranded RNA (dsRNA), and negative single-stranded RNA (-ssRNA) genomes, with +ssRNA genome being the prevalent nucleic acid type (82.08% in BNR and 75.46% in MNR). Except for 3 unclassified, 170 putative mycoviruses found in BNR belonged to 13 families; excluding 33 unclassified, 452 putative mycoviruses found in MNR belonged to 19 families. Through genome organization, multiple alignments, and phylogenetic analyses, 4 new parititviruses, 39 novel mitoviruses, and 4 new hypoviruses with nearly whole genome were detected in the 258 strains of BNR and MNR.
Collapse
|
14
|
Sun J, Pang C, Cheng X, Yang B, Jin B, Jin L, Qi Y, Sun Y, Chen X, Liu W, Cao H, Chen Y. Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105319. [PMID: 36740339 DOI: 10.1016/j.pestbp.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 μg/mL, with a mean value of 0.685 ± 0.687 μg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 μg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.
Collapse
Affiliation(s)
- Jiazhi Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingyun Yang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingbing Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxia Qi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
The Effect of Trichoderma harzianum Hypovirus 1 (ThHV1) and Its Defective RNA ThHV1-S on the Antifungal Activity and Metabolome of Trichoderma koningiopsis T-51. J Fungi (Basel) 2023; 9:jof9020175. [PMID: 36836290 PMCID: PMC9959424 DOI: 10.3390/jof9020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mycoviruses widely exist in filamentous fungi and sometimes cause phenotypic changes in hosts. Trichoderma harzianum hypovirus 1 (ThHV1) and its defective RNA ThHV1-S were found in T. harzianum and exhibited high transmissibility. In our previous study, ThHV1 and ThHV1-S were transferred to an excellent biological control agent T. koningiopsis T-51 to form a derivative strain 51-13. In this study, we assessed the metabolic changes in strain 51-13 and antifungal activity of its culture filtrate (CF) and volatile organic compounds (VOCs). The antifungal activity of CF and VOCs of T-51 and 51-13 was different. Compared with the CF of T-51, that of 51-13 exhibited high inhibitory activity against B. cinerea, Sclerotinia sclerotiorum, and Stagonosporopsis cucurbitacearum but low inhibitory activity against Leptosphaeria biglobosa and Villosiclava virens. The VOCs of 51-13 exhibited high inhibitory activity against F. oxysporum but low inhibitory activity against B. cinerea. The transcriptomes of T-51 and 51-13 were compared; 5531 differentially expressed genes (DEGs) were identified in 51-13 with 2904 up- and 2627 downregulated genes. In KEGG enrichment analysis, 1127 DEGs related to metabolic pathways (57.53%) and 396 DEGs related to biosynthesis of secondary metabolites (20.21%) were clearly enriched. From the CF of T-51 and 51-13, 134 differential secondary metabolites (DSMs) were detected between T-51 and 51-13 with 39 up- and 95 downregulated metabolites. From these, 13 upregulated metabolites were selected to test their antifungal activity against B. cinerea. Among them, indole-3-lactic acid and p-coumaric acid methyl ester (MeCA) exhibited strong antifungal activity. The IC50 of MeCA was 657.35 μM and four genes possibly related to the synthesis of MeCA exhibited higher expression in 51-13 than in T-51. This study revealed the mechanism underlying the increase in antifungal activity of T-51 because of the mycovirus and provided novel insights in fungal engineering to obtain bioactive metabolites via mycoviruses.
Collapse
|
16
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
17
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
18
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
19
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
20
|
Xie FL, Zhou XY, Xiao R, Zhang CJ, Zhong J, Zhou Q, Liu F, Zhu HJ. Discovery and exploration of widespread infection of mycoviruses in Phomopsis vexans, the causal agent of phomopsis blight of eggplant in China. FRONTIERS IN PLANT SCIENCE 2022; 13:996862. [PMID: 36438156 PMCID: PMC9685175 DOI: 10.3389/fpls.2022.996862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Phomopsis vexans, which causes Phomopsis blight of eggplant, has been reported worldwide. To study the biocontrol of this disease, 162 leaf and fruit samples of eggplant Phomopsis blight were collected from Hunan, Hubei, Jiangxi, Sichuan, Zhejiang, Fujian, Guangdong and Anhui Provinces from 2017 to 2019. Eighty-seven pathogenic fungus isolates were identified as P. vexans. The following studies were conducted: screening of sporulation medium, spore morphology analysis, mycovirus detection and identification of novel mycoviruses in these isolates. The results showed that eggplant tissue medium was the most suitable medium for rapid sporulation, and all isolates had mycoviruses consisting of mainly mixed infections. The genome of these mycoviruses varied from 1-15 kb. Five novel mycoviruses infecting P. vexans were obtained, including "Phomopsis vexans fusarivirus 1" (PvFV1), "Phomopsis vexans ourmia-like virus 1" (PvOLV1), "Phomopsis vexans endornavirus 2" (PvEV2), "Phomopsis vexans partitivirus 1" (PvPV1) and "Phomopsis vexans victorivirus L1" (PvVVL1). Thus, PvVVL1 displays a unique genome structure, and this is the first report of a victorivirus consisting of two segments and of a deltapartitivirus infecting the fungus host.
Collapse
Affiliation(s)
- Fang Ling Xie
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xin Yu Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Rong Xiao
- Hunan Institute of Microbiology, Changsha, China
| | - Chao Jun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jie Zhong
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qian Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Hong Jian Zhu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Guo J, Zhou X, Xie F, Cao J, Liu S, Zhong J, Zhu H. Hypovirulence caused by mycovirus in Colletotrichum fructicola. FRONTIERS IN PLANT SCIENCE 2022; 13:1038781. [PMID: 36275531 PMCID: PMC9585321 DOI: 10.3389/fpls.2022.1038781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Colletotrichum fructicola is a pathogenic fungus causing leaf black spot and fruit rot disease in a wide variety of crops. Some mycoviruses that cause detrimental effects on fungal hosts could be useful in studying the pathogenesis of fungal hosts. In this study, we reported two mycoviruses, Colletotrichum fructicola ourmia-like virus 1- Colletotrichum gloeosporioides ourmia-like virus 1 (CfOLV1-CgOLV1) and Colletotrichum fructicola ourmia-like virus 2 (CfOLV2), from a C. fructicola fungus. The complete genome sequences of CfOLV1-CgOLV1 and CfOLV2 contain 2,516 bp and 2,048 bp, respectively. Both of these viruses contain only one open reading frame (ORF), which encodes an RNA-dependent RNA polymerase (RdRp). CfOLV1-CgOLV1 was identical as the previously reported virus CgOLV1. Phylogenetic analysis showed that CfOLV2 is closely related to Scleroulivirus and Magoulivirus in the family Botourmiaviridae. Virus elimination and horizontal transmission experiments proved that the associated mycoviruses could reduce the pathogenicity of the host C. fructicola. In addition, we found that the virus-containing strains showed a much higher percentage of appressorium formation and more melanin production compared to isogenic virus-free strain, and the presence of the virus is detrimental to the growth of host fungi and regulates the integrity of the cell wall. Transcriptomic analysis showed that mycovirus infection caused various abnormal genes expression in C. fructicola. To the best of our knowledge, this is the first report of a hypovirulence-associated ourmia-like mycovirus in C. fructicola.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhong
- *Correspondence: Hongjian Zhu, ;Jie Zhong,
| | | |
Collapse
|
22
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
23
|
De Miccolis Angelini RM, Raguseo C, Rotolo C, Gerin D, Faretra F, Pollastro S. The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola. J Fungi (Basel) 2022; 8:jof8050481. [PMID: 35628739 PMCID: PMC9147972 DOI: 10.3390/jof8050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a comprehensive characterization of the mycovirome in a worldwide collection of 58 M. fructicola strains. Deep sequencing of double-stranded (ds)RNA extracts revealed a great abundance and variety of mycoviruses. A total of 32 phylogenetically distinct positive-sense (+) single-stranded (ss)RNA viruses were identified. They included twelve mitoviruses, one in the proposed family Splipalmiviridae, and twelve botourmiaviruses (phylum Lenarviricota), eleven of which were novel viral species; two hypoviruses, three in the proposed family Fusariviridae, and one barnavirus (phylum Pisuviricota); as well as one novel beny-like virus (phylum Kitrinoviricota), the first one identified in Ascomycetes. A partial sequence of a new putative ssDNA mycovirus related to viruses within the Parvoviridae family was detected in a M. fructicola isolate from Serbia. The availability of genomic sequences of mycoviruses will serve as a solid basis for further research aimed at deepening the knowledge on virus–host and virus–virus interactions and to explore their potential as biocontrol agents against brown rot disease.
Collapse
|
24
|
Córdoba L, Ruiz-Padilla A, Rodríguez-Romero J, Ayllón MA. Construction and Characterization of a Botrytis Virus F Infectious Clone. J Fungi (Basel) 2022; 8:jof8050459. [PMID: 35628716 PMCID: PMC9146958 DOI: 10.3390/jof8050459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the Gammaflexiviridae family of the plant-pathogenic fungus Botrytis cinerea. In this study, the complete sequence of a BVF strain isolated from B. cinerea collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP). The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends (RACE). Furthermore, a yet undetected subgenomic RNA species in BVF-V448 was identified, indicating that the CP is expressed via 3′ coterminal subgenomic RNAs (sgRNAs). We also report the successful construction of the first BVF full-length cDNA clone and synthesized in vitro RNA transcripts using the T7 polymerase, which could efficiently transfect two different strains of B. cinerea, B05.10 and Pi258.9. The levels of growth in culture and virulence on plants of BVF-V448 transfected strains were comparable to BVF-free strains. The infectious clones generated in this work provide a useful tool for the future development of an efficient BVF foreign gene expression vector and a virus-induced gene silencing (VIGS) vector as a biological agent for the control of B. cinerea.
Collapse
Affiliation(s)
- Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.C.); (A.R.-P.); (J.R.-R.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
Six Novel Mycoviruses Containing Positive Single-Stranded RNA and Double-Stranded RNA Genomes Co-Infect a Single Strain of the Rhizoctoniasolani AG-3 PT. Viruses 2022; 14:v14040813. [PMID: 35458543 PMCID: PMC9025235 DOI: 10.3390/v14040813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus 5 (RsFV5, +ssRNA), Rhizoctonia solani mitovirus 40 (RsMV40, +ssRNA), Rhizoctonia solani partitivirus 10 [RsPV10, double-stranded RNA (dsRNA)], Rhizoctonia solani partitivirus 11 (RsPV11, dsRNA), and Rhizoctonia solani RNA virus 11 (RsRV11, dsRNA). Whole genome sequences of RsFV4, RsMV40, RsPV10, RsPV11, and RsRV11, as well as a partial genome sequence of RsFV5, were obtained. The 3'- and 5'- untranslated regions of the five mycoviruses with complete genome sequences were folded into stable stem-loop or panhandle secondary structures. RsFV4 and RsFV5 are most closely related to Rhizoctonia solani fusarivirus 1 (RsFV1), however, the first open reading frame (ORF) of RsFV4 and RsFV5 encode a hypothetical protein that differs from the first ORF of RsFV1, which encodes a helicase. We confirmed that RsPV10 and RsPV11 assemble into the spherical virus particles (approximately 30 nm in diameter) that were extracted from strain ZJ-2H. This is the first report that +ssRNA and dsRNA viruses co-infect a single strain of R. solani AG-3 PT.
Collapse
|
26
|
Galindo-Solís JM, Fernández FJ. Endophytic Fungal Terpenoids: Natural Role and Bioactivities. Microorganisms 2022; 10:microorganisms10020339. [PMID: 35208794 PMCID: PMC8875210 DOI: 10.3390/microorganisms10020339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are a highly diverse group of fungi that intermittently colonize all plants without causing symptoms of the disease. They sense and respond to physiological and environmental changes of their host plant and microbiome. The inter-organism interactions are largely driven by chemical networks mediated by specialized metabolites. The balance of these complex interactions leads to healthy and strong host plants. Endophytic strains have particular machinery to produce a plethora of secondary metabolites with a variety of bioactivities and unknown functions in an ecological niche. Terpenoids play a key role in endophytism and represent an important source of bioactive molecules for human health and agriculture. In this review, we describe the role of endophytic fungi in plant health, fungal terpenoids in multiple interactions, and bioactive fungal terpenoids recently reported from endophytes, mainly from plants used in traditional medicine, as well as from algae and mangroves. Additionally, we highlight endophytic fungi as producers of important chemotherapeutic terpenoids, initially discovered in plants. Despite advances in understanding endophytism, we still have much to learn in this field. The study of the role, the evolution of interactions of endophytic fungi and their terpenoids provide an opportunity for better applications in human health and agriculture.
Collapse
Affiliation(s)
- Juan M. Galindo-Solís
- Posgrado en Biotecnología, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Mexico City CP 09340, Mexico;
| | - Francisco J. Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, Mexico City CP 09340, Mexico
- Correspondence: ; Tel.: +52-(55)-5804-6453
| |
Collapse
|
27
|
Wang Q, Zou Q, Dai Z, Hong N, Wang G, Wang L. Four Novel Mycoviruses from the Hypovirulent Botrytis cinerea SZ-2-3y Isolate from Paris polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants. Viruses 2022; 14:v14010151. [PMID: 35062353 PMCID: PMC8777694 DOI: 10.3390/v14010151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.
Collapse
Affiliation(s)
- Qiong Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Hainan University, Ministry of Education, Haikou 570100, China;
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2130; Fax: +86-27-8738-4670
| |
Collapse
|
28
|
Chun J, So KK, Ko YH, Kim DH. Molecular characteristics of a novel hypovirus from Trichoderma harzianum. Arch Virol 2021; 167:233-238. [PMID: 34674011 DOI: 10.1007/s00705-021-05253-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3' end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus "Alphahypovirus" of the family Hypoviridae. We accordingly designated this novel mycovirus "Trichoderma harzianum hypovirus 2" (ThHV2).
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Kum-Kang So
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea.
| |
Collapse
|
29
|
Kamaruzzaman M, Islam MS, Hasan MA, Sultana R, Faruque MO, Jiang C. Characterization of a hypovirulent strain of Botrytis cinerea from apple and quantification of the ICs related gene expression. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Yang R, Li N, Zhou Z, Li G. Characterization of the Populations of Botrytis cinerea Infecting Plastic Tunnel-Grown Strawberry and Tomato in the Hubei Province of China. PLANT DISEASE 2021; 105:1890-1897. [PMID: 33054622 DOI: 10.1094/pdis-01-20-0164-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A total of 707 isolates of Botrytis were collected from plastic tunnel-grown strawberry and tomato in the Hubei province of China. They were identified based on the specific molecular markers. Diversity of the B. cinerea (Bc) isolates was evaluated by typing the transposable elements (Boty, Flipper) and the mating types (MAT1-1, MAT1-2), as well as by determining virulence on tobacco (Nicotiana benthamiana) and fenhexamid sensitivity in agar medium. The results showed that 706 isolates (99.9%) were Bc and 1 isolate (0.1%) was B. pseudocinerea. The Bc isolates (n = 706) were classified into four transposable element types, Vacuma (3.1%), Boty (9.6%), Flipper (18.4%), and Transposa (68.8%). The strawberry and tomato subpopulations of Bc had significantly different (P < 0.05) compositions of the four transposable element types. The overall ratio of MAT1-1 to MAT1-2 deviated from 1:1 (n = 706; P = 0.0002), and MAT1-2 (56.9%) predominated over MAT1-1 (43.1%). In 7 of 12 geographic subpopulations, the ratio of MAT1-1 to MAT1-2 matched 1:1; however, in the remaining five geographic subpopulations, the ratio of MAT1-1 to MAT1-2 did not match 1:1. Results of the biological characterizations showed that most Bc isolates were highly sensitive or sensitive to fenhexamid, and the majority of Bc isolates were highly virulent or virulent on tobacco. Moreover, the relationship between genetic diversity and biological characteristics was analyzed. The results achieved during this study are helpful for understanding of the populations of B. cinerea.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziliang Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Sahin E, Keskin E, Akata I. The unique genome organization of two novel fusariviruses hosted by the true morel mushroom Morchella esculenta. Virus Res 2021; 302:198486. [PMID: 34146607 DOI: 10.1016/j.virusres.2021.198486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Two putative mycoviruses belonging to the proposed family "Fusariviridae" were identified in Morchella esculenta by sequencing of double-stranded RNAs extracted from the morel mushroom. These viruses were tentatively named "Morchella esculenta fusarivirus 1″ (MeFV1) and "Morchella esculenta fusarivirus 2″ (MeFV2). Including the poly(A) tail the complete genomes of MeFV1 and MeFV2 are composed of 9096 and 9011 nucleotides (nt) respectively. Both genomes contain four non-overlapping open reading frames (ORFs) in which the largest and the smallest ORFs are ORF2 and ORF3 for both genomes respectively. The ORF1 of MeFV1 and MeFV2 are preceded by the 5' untranslated regions (UTRs) of 27 and 37 nt respectively and encode 341 and 339 aa long proteins that do not exhibit significant similarity to any of the protein sequences present in GenBank database. The 1502 and 1511 aa long proteins encoded by ORF2 of MeFV1 and MeFV2 share 84.42% sequence identity to each other and are 58.54% and 58.57% identical to the RNA-dependent RNA polymerase (RdRp) of Morchella importuna fusarivirus 1 (MiFV1) respectively. Interestingly, a Promethin/LDAF1 protein domain that is associated with the endoplasmic reticulum (ER) and lipid droplet (LD) membranes was identified at the N terminal regions of MeFV1 and MeFV2 RdRps, implying that the replication of these viruses is linked to the lipid membranes. The ORF3 and ORF4 of MeFV1 and MeFV2 encode proteins (268 and 333 aa long, and 645 and 647 aa long respectively) that only share significant sequence similarities with the proteins encoded by the ORF2 and ORF3 of MiFV1 respectively. The 3' UTRs of MeFV1 and MeFV2 are 162 and 159 nt long respectively and both of them have 51 nt long terminal poly(A) traits. To our knowledge, MeFV1 and MeFV2 are the first fusariviruses identified in M. esculenta and this is the first study reporting on the presence of Promethin/LDAF1 domain in viral RdRps.
Collapse
Affiliation(s)
- Ergin Sahin
- Ankara University Faculty of Science Department of Biology 06100 Tandogan, Ankara, Turkey; Dokuz Eylül University Faculty of Science Department of Biology 35390 Buca, İzmir, Turkey.
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Ankara University Faculty of Agriculture Department of Fisheries and Aquaculture 06110 Dışkapı, Ankara, Turkey
| | - Ilgaz Akata
- Ankara University Faculty of Science Department of Biology 06100 Tandogan, Ankara, Turkey
| |
Collapse
|
32
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
33
|
Abstract
Botrytis cinerea is one of the most important plant-pathogenic fungus. Products based on microorganisms can be used in biocontrol strategies alternative to chemical control, and mycoviruses have been explored as putative biological agents in such approaches. Here, we have explored the mycovirome of B. cinerea isolates from grapevine of Italy and Spain to increase the knowledge about mycoviral diversity and evolution, and to search for new widely distributed mycoviruses that could be active ingredients in biological products to control this hazardous fungus. A total of 248 B. cinerea field isolates were used for our metatranscriptomic study. Ninety-two mycoviruses were identified: 62 new mycoviral species constituting putative novel viral genera and families. Of these mycoviruses, 57 had a positive-sense single-stranded RNA (ssRNA) genome, 19 contained a double-stranded RNA (dsRNA) genome, 15 had a negative-sense ssRNA genome, and 1 contained a single-stranded DNA (ssDNA) genome. In general, ssRNA mycoviruses were widely distributed in all sampled regions, the ssDNA mycovirus was more frequently found in Spain, and dsRNA mycoviruses were scattered in some pools of both countries. Some of the identified mycoviruses belong to clades that have never been found associated with Botrytis species: Botrytis-infecting narnaviruses; alpha-like, umbra-like, and tymo-like ssRNA+ mycoviruses; trisegmented ssRNA- mycovirus; bisegmented and tetrasegmented dsRNA mycoviruses; and finally, an ssDNA mycovirus. Among the results obtained in this massive mycovirus screening, the discovery of novel bisegmented viruses, phylogenetically related to narnaviruses, is remarkable.IMPORTANCE The results obtained here have expanded our knowledge of mycoviral diversity, horizontal transfers, and putative cross-kingdom events. To date, this study presents the most extensive and wide diversity collection of mycoviruses infecting the necrotrophic fungus B. cinerea The collection included all types of mycoviruses, with dsRNA, ssRNA+, ssRNA-, and ssDNA genomes, most of which were discovered here, and some of which were previously reported as infecting B. cinerea or other plant-pathogenic fungi. Some of these mycoviruses are reported for the first time here associated with B. cinerea, as a trisegmented ssRNA- mycovirus and as an ssDNA mycovirus, but even more remarkablly, we also describe here four novel bisegmented viruses (binarnaviruses) not previously described in nature. The present findings significantly contribute to general knowledge in virology and more particularly in the field of mycovirology.
Collapse
|
34
|
Choquer M, Rascle C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, Smilevski P, Ferria J, Savadogo M, Souibgui E, Gagey MJ, Dupuy JW, Rollins JA, Marcato R, Noûs C, Bruel C, Poussereau N. The infection cushion of Botrytis cinerea: a fungal 'weapon' of plant-biomass destruction. Environ Microbiol 2021; 23:2293-2314. [PMID: 33538395 DOI: 10.1111/1462-2920.15416] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.
Collapse
Affiliation(s)
- Mathias Choquer
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Christine Rascle
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Isabelle R Gonçalves
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Cécile Ribot
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Elise Loisel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Pavlé Smilevski
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jordan Ferria
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Mahamadi Savadogo
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Eytham Souibgui
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Marie-Josèphe Gagey
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Riccardo Marcato
- Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France.,Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Legnaro, Italy
| | - Camille Noûs
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Christophe Bruel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| |
Collapse
|
35
|
Kamaruzzaman M, Wang Z, Wu M, Yang L, Han Y, Li G, Zhang J. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea. Microbiol Res 2021; 247:126731. [PMID: 33676312 DOI: 10.1016/j.micres.2021.126731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/05/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Our previous study identified a hypovirulent strain QT5-19 of Botrytis cinerea, the causal agent of the plant gray mold disease, and found that QT5-19 can produce volatile organic compounds (VOCs) with high antifungal activity and high control efficacy against B. cinerea. However, impact of the QT5-19 VOCs on plant growth remains unknown. This study was conducted to investigate the impact of the QT5-19 VOCs on tomato growth, and to elucidate the mechanisms for the plant growth-promoting (PGP) activity of the QT5-19 VOCs. Results showed that compared to the control treatment, the QT5-19 VOCs significantly (P < 0.05) promoted tomato growth, and the PGP activity of the QT5-19 VOCs acted in dose- and time-dependent manners. Results also showed that the values of photosynthetic assimilation, stomatal conductance and transpiration, water use efficiency and chlorophyll content in the treatments of the QT5-19 VOCs were significantly (P < 0.05) higher than the corresponding values in the control treatment. The QT5-19 VOCs up-regulated expression of the genes for expansins (EXP2, EXP9 and EXP18), IAA (SlIAA1, SlIAA3 and SlIAA9), cytokinins (SlCKX1) and gibberellins in leaves and/or roots, whereas down-regulated expression of the gene ACO1 for ethylene in both organs. Moreover, enhanced accumulation of auxins and decreased accumulation of ethylene were observed in tomato roots in the treatment of the QT5-19 VOCs, compared to the control treatment. These results suggest that the QT5-19 VOCs probably promote tomato growth through improving photosynthesis and biosynthesis of expansins and IAA, and reducing ethylene biosynthesis. This study suggests that QT5-19 is a versatile biocontrol control agent.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ze Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yongchao Han
- Institute of Industrial Crops, Hubei Academy of Agricultural Science, Wuhan, 430070, Hubei, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
36
|
Gao Z, Cai L, Liu M, Wang X, Yang J, An H, Deng Q, Zhang S, Fang S. A novel previously undescribed fusarivirus from the phytopathogenic fungus Setosphaeria turcica. Arch Virol 2021; 166:665-669. [PMID: 33409550 DOI: 10.1007/s00705-021-04954-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/02/2021] [Indexed: 02/03/2023]
Abstract
A putative mycovirus belonging to the proposed family "Fusariviridae" was discovered in Setosphaeria turcica by sequencing a double-stranded RNA extracted from this phytopathogenic fungus. The virus was tentatively named "Setosphaeria turcica fusarivirus 1" (StFV1). StFV1 has a genome comprising 6685 nucleotides. The genome contains three open reading frames (ORF). The largest ORF, ORF1, is preceded by an untranslated region (UTR) of 16 nucleotides and separated from ORF2 by an intergenic region of 63 nucleotides. The smallest ORF, ORF3, overlaps ORF2 by 16 nucleotides and is followed by a 3'-UTR of 82 nucleotides. The protein encoded by ORF1 is 71.8%, 67.4% and 68.1% identical to the RNA-dependent RNA polymerases (RdRps) of Pleospora typhicola fusarivirus 1 (PtFV1), Plasmopara viticola lesion-associated fusarivirus 1 (PvlaFV1), and Plasmopara viticola lesion-associated fusarivirus 3 (PvlaFV3), respectively, but has less than 47% amino acid sequence identity to the RdRps of other fusariviruses. To our knowledge, this is the first fusarivirus discovered in S. turcica and the first virus to be identified in this fungus using conventional cloning methods.
Collapse
Affiliation(s)
- Zhongnan Gao
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Cai
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Minghong Liu
- Zunyi City Company, Guizhou Tobacco Company, Zunyi, 563000, Guizhou, China
| | - Xiaoyan Wang
- Zunyi City Company, Guizhou Tobacco Company, Zunyi, 563000, Guizhou, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Hongliu An
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Shouguo Fang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
37
|
Wang J, Ni Y, Liu X, Zhao H, Xiao Y, Xiao X, Li S, Liu H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol 2020; 7:veaa095. [PMID: 33505706 PMCID: PMC7816680 DOI: 10.1093/ve/veaa095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophomina phaseolina is an important necrotrophic phytopathogenic fungus and cause extensive damage in many oilseed crops. Twelve M.phaseolina isolates with diverse biological phenotypes were selected for a high-throughput sequencing-based metatranscriptomic and bioinformatics analysis to identify viruses infecting M.phaseolina. The analysis identified 40 partial or nearly complete viral genome segments, 31 of which were novel viruses. Among these viral sequences, 43% of the viral genomes were double-stranded RNA (dsRNA), 47% were positive single-stranded RNA (ssRNA+), and the remaining 10% were negative sense-stranded RNA (ssRNA−). The 40 viruses showed affinity to 13 distinct viral lineages, including Bunyavirales (four viruses), Totiviridae (three viruses), Chrysoviridae (five viruses), Partitiviridae (four viruses), Hypoviridae (one virus), Endornaviridae (two viruses), Tombusviridae (three viruses), Narnaviridae (one virus), Potyviridae (one virus), Bromoviridae (one virus), Virgaviridae (six viruses), ‘Fusagraviridae’ (five viruses), and Ourmiavirus (four viruses). Two viruses are closely related to two families, Potyviridae and Bromoviridae, which previously contained no mycovirus species. Moreover, nine novel viruses associated with M.phaseolina were identified in the family Totiviridae, Endornaviridae, and Partitiviridae. Coinfection with multiple viruses is prevalent in M.phaseolina, with each isolate harboring different numbers of viruses, ranging from three to eighteen. Furthermore, the effects of the viruses on the fungal host were analyzed according to the biological characteristics of each isolate. The results suggested that M.phaseolina hypovirus 2, M.phaseolina fusagravirus virus 1-5 (MpFV1-5), M.phaseolina endornavirus 1-2 (MpEV1-2), M.phaseolina ourmia-like virus 1-3 (MpOLV1-3), M.phaseolina mitovirus 4 (MpMV4), and M.phaseolina mycobunyavirus 1-4 (MpMBV1-4) were only detected in hypovirulent isolates. Those viruses associated with hypovirulence might be used as biological control agents as an environmentally friendly alternative to chemical fungicides. These findings considerably expand our understanding of mycoviruses in M.phaseolina and unvailed the presence of a huge difference among viruses in isolates from different hosts in distant geographical regions. Together, the present study provides new knowledge about viral evolution and fungus-virus coevolution.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China.,Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Yannong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Xueqiong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070 Hubei Province, PR China
| | - Shujun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pest in Huanghuai Growing Area, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, No.116, Garden road, Jingshui District, Zhengzhou, 450002 Henan Province, PR China
| |
Collapse
|
38
|
Hao F, Wu M, Li G. Characterization of a novel genomovirus in the phytopathogenic fungus Botrytis cinerea. Virology 2020; 553:111-116. [PMID: 33264653 DOI: 10.1016/j.virol.2020.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
This study characterized a single-stranded circular DNA virus in Botrytis cinerea-namely, Botrytis cinerea genomovirus 1 (BcGV1). The genome of BcGV1 was 1710 nucleotides (nts) long, possessing two ORFs, encoding a putative replication initiation protein (Rep) and a hypothetical protein. The Rep contained seven conserved motifs. The two ORFs were separated by two intergenic regions; the large intergenic region (LIR) contained 259 nts while the small intergenic region (SIR) contained 95 nts. A nonanucleotide, TAACAGTAC, in the LIR was predicted to be associated with the initiation of viral replication. Based on the phylogenetic tree constructed by Reps, BcGV1 belongs to the family Genomoviridae, forming an independent branch, indicating that BcGV1 may belong to a new genus. BcGV1 could be detected in 6.7% of tested B. cinerea strains, suggesting that BcGV1 may be widely distributed in the Chinese B. cinerea population.
Collapse
Affiliation(s)
- Fangmin Hao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Institute of Vegetables and the Key Lab of Cucurbitaceous Vegetables Breeding in Ningbo City, Ningbo Academy of Agricultural Sciences, Ningbo, 315040, PR China
| | - Mingde Wu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Guoqing Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
39
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
40
|
Torres-Trenas A, Cañizares MC, García-Pedrajas MD, Pérez-Artés E. Molecular and Biological Characterization of the First Hypovirus Identified in Fusarium oxysporum. Front Microbiol 2020; 10:3131. [PMID: 32038565 PMCID: PMC6992542 DOI: 10.3389/fmicb.2019.03131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
A novel mycovirus named Fusarium oxysporum f. sp. dianthi hypovirus 2 (FodHV2) has been identified infecting isolates Fod 408 and Fod 409 of Fusarium oxysporum f. sp. dianthi from Morocco. The genome of FodHV2 is 9,444 nucleotides long excluding the poly(A) tail, and has a single open reading frame encoding a polyprotein. The polyprotein contains three highly conserved domains of UDP glucose/sterol glucosyltransferase, RNA-dependent RNA polymerase, and viral RNA helicase. In addition, particular residues of Cys, Hys, and Gly detected in the N-terminal region suggest the presence of the catalytic site of a highly diverged papain-like protease. Genomic organization, presence of particular conserved motifs, and phylogenetic analyses based on multiple alignments clearly grouped FodHV2 with the members of the family Hypoviridae. FodHV2 was transferred by hyphal anastomosis to a recipient HygR-tagged virus-free strain. The comparison of the infected and non-infected isogenic strains showed that FodHV2 did not alter the vegetative growth, neither the conidiation nor the virulence of its fungal host. Efficiency of FodHV2 transmission through the conidia was 100% in both the original and the recipient infected-isolates. To the best of our knowledge, this is the first report of a hypovirus infecting the plant pathogen F. oxysporum, and also the first one of a hypovirus detected in a fungal strain from the African continent.
Collapse
Affiliation(s)
- Almudena Torres-Trenas
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - M. Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - M. Dolores García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Encarnación Pérez-Artés
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
41
|
The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. Int J Mol Sci 2020; 21:ijms21020603. [PMID: 31963451 PMCID: PMC7013506 DOI: 10.3390/ijms21020603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Botrytis cinerea, a ubiquitous necrotrophic plant-pathogenic fungus, is responsible for grey mold and rot disease in a very wide range of plant species. Subtilisin-like proteases (or subtilases) are a very diverse family of serine proteases present in many organisms and are reported to have a broad spectrum of biological functions. Here, we identified two genes encoding subtilisin-like proteases (Bcser1 and Bcser2) in the genome of B. cinerea, both of which contain an inhibitor I9 domain and a peptidase S8 domain. The expression levels of Bcser1 and Bcser2 increased during the sclerotial forming stage, as well as during a later stage of hyphal infection on Arabidopsis thaliana leaves, but the up-regulation of Bcser1 was significantly higher than that of Bcser2. Interestingly, deletion of Bcser1 had no effect on the fungal development or virulence of B. cinerea. However, deletion of Bcser2 or double deletion of Bcser1 and Bcser2 severely impaired the hyphal growth, sclerotial formation and conidiation of B. cinerea. We also found that ∆Bcser2 and ∆Bcser1/2 could not form complete infection cushions and then lost the ability to infect intact plant leaves of Arabidopsis and tomato but could infect wounded plant tissues. Taken together, our results indicate that the subtilisin-like protease Bcser2 is crucial for the sclerotial formation, conidiation, and virulence of B. cinerea.
Collapse
|
42
|
de Vallée A, Bally P, Bruel C, Chandat L, Choquer M, Dieryckx C, Dupuy JW, Kaiser S, Latorse MP, Loisel E, Mey G, Morgant G, Rascle C, Schumacher J, Simon A, Souibgui E, Viaud M, Villalba F, Poussereau N. A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants? Front Microbiol 2019; 10:2829. [PMID: 31866989 PMCID: PMC6908482 DOI: 10.3389/fmicb.2019.02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted proteins in the infection process. In the twelve non-pathogenic mutants, the differentiation of infection cushions was also impaired, suggesting a link between the penetration structures and the secretion of proteins involved in the virulence of the pathogen.
Collapse
Affiliation(s)
- Amélie de Vallée
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Pascal Bally
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Bruel
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Lucie Chandat
- Centre de Recherche La Dargoire, Bayer SAS, Lyon, France
| | - Mathias Choquer
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Cindy Dieryckx
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Jean William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Sophie Kaiser
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | | | - Elise Loisel
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Géraldine Mey
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Guillaume Morgant
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christine Rascle
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Julia Schumacher
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Eytham Souibgui
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | - Nathalie Poussereau
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| |
Collapse
|
43
|
Wang J, Xiao Y, Zhao H, Ni Y, Liu X, Zhao X, Wang G, Xiao X, Liu H. A novel double-stranded RNA mycovirus that infects Macrophomina phaseolina. Arch Virol 2019; 164:2411-2416. [PMID: 31254049 DOI: 10.1007/s00705-019-04334-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
Macrophomina phaseolina is a pathogenic fungus of the family Botryosphaeriaceae that causes stem rot or leaf blight in many economically important plants. Mycoviruses exist widely in fungi, but there are only a limited number of reports on mycovirus infection in M. phaseolina. A novel dsRNA virus, tentatively named "Macrophomina phaseolina fusagravirus 1" (MpFV1), was isolated from strain 2012-19 of M. phaseolina, and its molecular features were examined. The full-length cDNA of MpFV1 comprises 9,289 nucleotides with a predicted GC content of 48.1% and two discontinuous open reading frames (ORF 1 and 2). A-1 frameshift region with two typical factors, including a shifty heptamer (GGAAAAC) and an H-type pseudoknot, was predicted in the junction region of ORF1 and ORF2. The protein encoded by ORF1 shows significant similarity to a hypothetical protein, whereas ORF2 encodes an RNA-dependent RNA polymerase (RdRp) via a ribosomal frameshifting mechanism. Homology searches and phylogenetic analysis based on the RdRp sequence suggested that MpFV1 is a new member of the proposed family "Fusagraviridae".
Collapse
Affiliation(s)
- Jing Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yannong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xinbei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Gaofeng Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xueqiong Xiao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
44
|
Thapa V, Roossinck MJ. Determinants of Coinfection in the Mycoviruses. Front Cell Infect Microbiol 2019; 9:169. [PMID: 31179246 PMCID: PMC6542947 DOI: 10.3389/fcimb.2019.00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vaskar Thapa
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
45
|
Li H, Bian R, Liu Q, Yang L, Pang T, Salaipeth L, Andika IB, Kondo H, Sun L. Identification of a Novel Hypovirulence-Inducing Hypovirus From Alternaria alternata. Front Microbiol 2019; 10:1076. [PMID: 31156589 PMCID: PMC6530530 DOI: 10.3389/fmicb.2019.01076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses are wide spread throughout almost all groups of fungi but only a small number of mycoviruses can attenuate the growth and virulence of their fungal hosts. Alternaria alternata is an ascomycete fungus that causes leaf spot diseases on various crop plants. In this study, we identified a novel ssRNA mycovirus infecting an A. alternata f. sp. mali strain isolated from an apple orchard in China. Sequence analyses revealed that this virus is related to hypoviruses, in particular to Wuhan insect virus 14, an unclassified hypovirus identified from insect meta-transcriptomics, as well as other hypoviruses belonging to the genus Hypovirus, and therefore this virus is designed as Alternaria alternata hypovirus 1 (AaHV1). The genome of AaHV1 contains a single large open-reading frame encoding a putative polyprotein (∼479 kDa) with a cysteine proteinase-like and replication-associated domains. Curing AaHV1 from the fungal host strain indicated that the virus is responsible for the slow growth and reduced virulence of the host. AaHV1 defective RNA (D-RNA) with internal deletions emerging during fungal subcultures but the presence of D-RNA does not affect AaHV1 accumulation and pathogenicities. Moreover, AaHV1 could replicate and confer hypovirulence in Botryosphaeria dothidea, a fungal pathogen of apple white rot disease. This finding could facilitate better understanding of A. alternata pathogenicity and is relevant for development of biocontrol methods of fungal diseases.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ida Bagus Andika
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
46
|
Kotta-Loizou I. Mycoviruses: Past, Present, and Future. Viruses 2019; 11:v11040361. [PMID: 31010228 PMCID: PMC6520932 DOI: 10.3390/v11040361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
47
|
Discovery of Cucumis melo endornavirus by deep sequencing of human stool samples in Brazil. Virus Genes 2019; 55:332-338. [PMID: 30915664 DOI: 10.1007/s11262-019-01648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023]
Abstract
The nearly complete genome sequences of two Cucumis melo endornavirus (CmEV) strains were obtained using deep sequencing while investigating fecal samples for the presence of gastroenteritis viruses. The Brazilian CmEV BRA/TO-23 (aa positions 116-5027) and BRA/TO-74 (aa positions 26-5057) strains were nearly identical to the reference CmEV CL-01 (USA) and SJ1 (South Korea) strains, showing 97% and 98% of nucleotide and amino acid identity, respectively. Endornaviruses are not known to be associated with human disease and their presence may simply reflect recent dietary consumption. Metagenomic analyses offered an opportunity to identify for the first time in Brazil a newly described endornavirus species.
Collapse
|
48
|
Cottet L, Potgieter CA, Castro ME, Castillo A. Molecular characterization of a new botybirnavirus that infects Botrytis cinerea. Arch Virol 2019; 164:1479-1483. [PMID: 30848387 DOI: 10.1007/s00705-019-04184-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named "Botrytis cinerea botybirnavirus 1".
Collapse
Affiliation(s)
- Luis Cottet
- Laboratorio de Control Biológico y Nanotecnología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Chile, Alameda 3363, 9170022, Estación Central, Santiago, Chile
| | - Christiaan A Potgieter
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.,Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
| | - Miguel E Castro
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Chile
| | - Antonio Castillo
- Laboratorio de Control Biológico y Nanotecnología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago, Chile, Alameda 3363, 9170022, Estación Central, Santiago, Chile.
| |
Collapse
|
49
|
Liu H, Liu R, Li CX, Wang H, Zhu HJ, Gao BD, Zhou Q, Zhong J. A Victorivirus and Two Novel Mitoviruses Co-Infected the Plant Pathogen Nigrospora oryzae. Viruses 2019; 11:E83. [PMID: 30669450 PMCID: PMC6356909 DOI: 10.3390/v11010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Three dsRNAs, in sizes of approximately 2.5⁻5 kbp, were detected in the plant pathogenic fungus Nigrospora oryzae strain CS-7.5-4. Genomic analysis showed that the 5.0 kb dsRNA was a victorivirus named as Nigrospora oryzae victorivirus 2 (NoRV2). The genome of NoRV2 was 5166 bp in length containing two overlapping open reading frames (ORFs), ORF1 and ORF2. ORF1 was deduced to encode a coat protein (CP) showing homology to the CPs of viruses belonging to the Totiviridae family. The stop codon of ORF1 and the start codon of ORF2 were overlapped by the tetranucleotide sequence AUGA. ORF2 was predicted to encode an RNA-dependent RNA polymerase (RdRp), which was highly similar to the RdRps of victoriviruses. Virus-like particle examination demonstrated that the genome of NoRV2 was solely encapsidated by viral particles with a diameter of approximately 35 nm. The other two dsRNAs that were less than 3.0 kb were predicted to be the genomes of two mitoviruses, named as Nigrospora oryzae mitovirus 1 (NoMV1) and Nigrospora oryzae mitovirus 2 (NoMV2). Both NoMV1 and NoMV2 were A-U rich and with lengths of 2865 and 2507 bp, respectively. Mitochondrial codon usage inferred that each of the two mitoviruses contains a major large ORF encoding a mitoviral RdRp. Horizontal transfer experiments showed that the NoMV1 and NoMV2 could be cotransmitted horizontally via hyphal contact to other virus-free N. oryzae strains and causes phenotypic change to the recipient, such as an increase in growth rate. This is the first report of mitoviruses in N. oryzae.
Collapse
Affiliation(s)
- Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Rui Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Chang Xin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Hong Jian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
50
|
Kamaruzzaman M, He G, Wu M, Zhang J, Yang L, Chen W, Li G. A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses 2019; 11:E24. [PMID: 30609795 PMCID: PMC6356794 DOI: 10.3390/v11010024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
A pink isolate (QT5-19) of Botrytis cinerea was compared with three gray isolates of B. cinerea for growth and morphogenesis on potato dextrose agar (PDA), and for pathogenicity on tobacco. A double-stranded (ds) RNA mycovirus infecting QT5-19 was identified based on its genome feature and morphology of the virus particles. The results showed that QT5-19 grew rapidly and established flourishing colonies as the gray isolates did. However, it is different from the gray isolates, as it failed to produce conidia and sclerotia asthe gray isolates did. QT5-19 hardly infected tobacco, whereas the gray isolates aggressively infected tobacco. Two dsRNAs were detected in QT5-19, dsRNA 1 and dsRNA 2, were deduced to encode two polypepetides with homology to viral RNA-dependent RNA polymerase (RdRp) and coat protein (CP), respectively. Phylogenetic analysis of the amino acid sequences of RdRp and CP indicated that the two dsRNAs represent the genome of a novel partitivirus in the genus Alphapartitivirus, designated here as Botrytis cinerea partitivirus 2 (BcPV2). BcPV2 in QT5-19 was successfully transmitted to the three gray isolates through hyphal contact. The resulting BcPV2-infected derivatives showed rapid growth on PDA with defects in conidiogenesis and sclerogenesis, and hypovirulence on tobacco. This study suggests that BcPV2 is closely associated with hypovirulence of B. cinerea.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoyuan He
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U. S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|