1
|
Gu H, Qiu H, Yang H, Deng Z, Zhang S, Du L, He F. PRRSV utilizes MALT1-regulated autophagy flux to switch virus spread and reserve. Autophagy 2024:1-22. [PMID: 39081059 DOI: 10.1080/15548627.2024.2386195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen, which can survive host antiviral immunity with various mechanisms. PRRSV infection induces macroautophagy/autophagy, facilitating virus replication. MALT1, a central immune regulator, was manipulated by PRRSV to optimize viral infection at different stages of the virus cycle. In this study, the key role of MALT1 in autophagy regulation during PRRSV infection was characterized, enlightening the role of autophagy flux in favor of virus spread and persistent infection. PRRSV-induced autophagy was confirmed to facilitate virus proliferation. Furthermore, autophagic fusion was dynamically regulated during PRRSV infection. Importantly, PRRSV-induced MALT1 facilitated autophagosome-lysosome fusion and autolysosome formation, thus contributing to autophagy flux and virus proliferation. Mechanically, MALT1 regulated autophagy via mediating MTOR-ULK1 and -TFEB signaling and affecting lysosomal homeostasis. MALT1 inhibition by inhibitor Mi-2 or RNAi induced lysosomal membrane permeabilization (LMP), leading to the block of autophagic fusion. Further, MALT1 overexpression alleviated PRRSV-induced LMP via inhibiting ROS generation. In addition, blocking autophagy flux suppressed virus release significantly, indicating that MALT1-maintained complete autophagy flux during PRRSV infection favors successful virus spread and its proliferation. In contrast, autophagosome accumulation upon MALT1 inhibition promoted PRRSV reserve for future virus proliferation once the autophagy flux recovers. Taken together, for the first time, these findings elucidate that MALT1 was utilized by PRRSV to regulate host autophagy flux, to determine the fate of virus for either proliferation or reserve.Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; BFP/mBFP: monomeric blue fluorescent protein; CQ: chloroquine; DMSO: dimethyl sulfoxide; dsRNA: double-stranded RNA; GFP: green fluorescent protein; hpi: hours post infection; IFA: indirect immunofluorescence assay; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine-methyl ester; LMP: lysosomal membrane permeabilization; mAb: monoclonal antibody; MALT1: MALT1 paracaspase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; nsp: nonstructural protein; ORF: open reading frame; pAb: polyclonal antibody; PRRSV: porcine reproductive and respiratory syndrome virus; PRRSV-N: PRRSV nucleocapsid protein; Rapa: rapamycin; RFP: red fluorescent protein; ROS: reactive oxygen species; SBI: SBI-0206965; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| |
Collapse
|
2
|
Ren J, Tan S, Chen X, Wang X, Lin Y, Jin Y, Niu S, Wang Y, Gao X, Liang L, Li J, Zhao Y, Tian WX. Characterization of a novel recombinant NADC30‑like porcine reproductive and respiratory syndrome virus in Shanxi Province, China. Vet Res Commun 2024; 48:1879-1889. [PMID: 38349546 DOI: 10.1007/s11259-024-10319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 06/04/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.
Collapse
Affiliation(s)
- Jianle Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Shanshan Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd, Beijing, China
| | - Xizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yiting Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yi Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Sheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Libin Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Junping Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yujun Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Wen-Xia Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
| |
Collapse
|
3
|
Jiang D, Tu T, Zhou Y, Li Y, Luo Y, Yao X, Yang Z, Ren M, Wang Y. Epidemiological investigation and pathogenicity of porcine reproductive and respiratory syndrome virus in Sichuan, China. Front Microbiol 2023; 14:1241354. [PMID: 37779701 PMCID: PMC10533931 DOI: 10.3389/fmicb.2023.1241354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) lineage 8 was first detected in mainland China in 2006 and has since rapidly spread to become the primary epidemic strain in the country. In this study, samples such as lung tissue, hilar lymph nodes, abortion fetuses, and blood were collected from large-scale pig farms across 11 prefecture-level cities in Sichuan province between 2019 and 2020 for antigen detection and PRRS virus isolation. The antigen detection results indicated that the positive rate of HP-PRRSV (JXA1-Like strain) was 44.74% (51/114), NADC30-Like PRRSV was 17.54% (20/114), and classical PRRSV (VR2332-Like strain) was 37.72% (43/114). The predominant strain was HP-PRRSV. Positive samples were further inoculated into Marc-145 cells for virus isolation and identification, leading to the isolation of a new JXA1-Like PRRSV strain named SCSN2020. The strain was characterized by RT-qPCR, indirect immunofluorescence assay (IFA), plaque purification, electron microscopy, and whole genome sequencing. The total length of the viral genome was determined to be approximately 15,374 bp. A comparison of the SCSN2020 genome with VR2332 revealed that both strains had the same discontinuous 30-amino acid deletion on the Nsp2 gene. ORF5 genotyping classified the SCSN2020 strain as sublineage 8.7, with a whole genome sequence identity of 99.34% with JXA1. Furthermore, we evaluated the pathogenicity of the SCSN2020 strain in 28-day-old piglets and observed persistent fever from day 4 to day 10, weight loss started on day 7, dyspnea and severe lung lesions began started on day 14. The results of this study highlight the current PRRSV epidemic situation in Sichuan province and provide a scientific reference for subsequent prevention and control measures.
Collapse
Affiliation(s)
- Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanwei Li
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Zhang H, Duan K, Du Y, Xiao S, Fang L, Zhou Y. One-Step Assembly of a PRRSV Infectious cDNA Clone and a Convenient CRISPR/Cas9-Based Gene-Editing Technology for Manipulation of PRRSV Genome. Viruses 2023; 15:1816. [PMID: 37766223 PMCID: PMC10536534 DOI: 10.3390/v15091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.
Collapse
Affiliation(s)
- Hejin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kaiqi Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbin Du
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Luo Q, Zheng Y, He Y, Li G, Zhang H, Sha H, Zhang Z, Huang L, Zhao M. Genetic variation and recombination analysis of the GP5 ( GP5a) gene of PRRSV-2 strains in China from 1996 to 2022. Front Microbiol 2023; 14:1238766. [PMID: 37675419 PMCID: PMC10477998 DOI: 10.3389/fmicb.2023.1238766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been prevalent in China for more than 25 years and remains one of the most significant pathogens threatening the pig industry. The high rate of mutation and frequent recombination of PRRSV have exacerbated its prevalence, particularly with the emergence of highly pathogenic PRRSV (HP-PRRSV) has significantly increased the pathogenicity of PRRSV, posing a serious threat to the development of Chinese pig farming. To monitor the genetic variation of PRRSV-2 in China, the GP5 sequences of 517 PRRSV-2 strains from 1996 to 2022 were analyzed and phylogenetic trees were constructed. Furthermore, a total of 60 PRRSV strains, originating from various lineages, were carefully chosen for nucleotide and amino acid homologies analysis. The results showed that the nucleotide homologies of the PRRSV GP5 gene ranged from 81.4 to 100.0%, and the amino acid homologies ranged from 78.1 to 100.0%. Similarly, the PRRSV GP5a gene showed 78.0 ~ 100.0% nucleotide homologies and 70.2 ~ 100.0% amino acid homologies. Amino acid sequence comparisons of GP5 and GP5a showed that some mutations, such as substitutions, deletions, and insertions, were found in several amino acid sites in GP5, these mutations were primarily found in the signal peptide region, two highly variable regions (HVRs), and near two T-cell antigenic sites, while the mutation sites of GP5a were mainly concentrated in the transmembrane and intramembrane regions. Phylogenetic analysis showed that the prevalent PRRSV-2 strains in China were divided into lineages 1, 3, 5, and 8. Among these, strains from lineage 8 and lineage 1 are currently the main prevalent strains, lineage 5 and lineage 8 have a closer genetic distance. Recombination analysis revealed that one recombination event occurred in 517 PRRSV-2 strains, this event involved recombination between lineage 8 and lineage 1. In conclusion, this analysis enhances our understanding of the prevalence and genetic variation of PRRSV-2 in China. These findings provide significant insights for the development of effective prevention and control strategies for PRRS and serve as a foundation for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Zhang Z, Zhang H, Luo Q, Zheng Y, Kong W, Huang L, Zhao M. Variations in NSP1 of Porcine Reproductive and Respiratory Syndrome Virus Isolated in China from 1996 to 2022. Genes (Basel) 2023; 14:1435. [PMID: 37510339 PMCID: PMC10379836 DOI: 10.3390/genes14071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Since its successful isolation in China in 1995, the porcine reproductive and respiratory syndrome virus (PRRSV) has been mutating into highly pathogenic strains by constantly changing pathogenicity and genetic makeup. In this study, we investigated the prevalence and genetic variation of nonstructural protein 1 (NSP1) in PRRSV-2, the main strain prevalent in China. After formulating hypotheses regarding the biology of the NSP1 protein, the nucleotide and amino acid similarity of NSP1 were analyzed and compared in 193 PRRSV-2 strains. The results showed that NSP1 has a stable hydrophobic protein with a molecular weight of 43,060.76 Da. Although NSP1 lacked signal peptides, it could regulate host cell signaling. Furthermore, NSP1 of different strains had high nucleotide (79.6-100%) and amino acid similarity (78.6-100%). In the amino acid sequence comparison of 15 representative strains of PRRSV-2, multiple amino acid substitution sites were found in NSP1. Phylogenetic tree analysis showed that lineages 1 and 8 had different evolutionary branches with long genetic distances. This study lays the foundation for an in-depth understanding of the nature and genetic variation of NSP1 and the development of a safe and effective vaccine in the future.
Collapse
Affiliation(s)
- Zhiqing Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (Z.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
7
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
8
|
Zhou L, Yu J, Zhou J, Long Y, Xiao L, Fan Y, Yang D, Zhang B, Zhang Z, Liu J. A novel NADC34-like porcine reproductive and respiratory syndrome virus 2 with complex genome recombination is highly pathogenic to piglets. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105436. [PMID: 37094706 DOI: 10.1016/j.meegid.2023.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
The NADC34-like porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) first emerged in China in 2017 and has the potential to become the dominant PRRSV strain in China. Here, a novel PRRSV-2, SCcd2020, was isolated from diseased piglets in Sichuan province, southwest China in 2020. The complete viral genome was determined and analyzed. An ORF5-based phylogenetic analysis showed that SCcd2020 clustered with NADC34-like strains, whereas the genome sequence clustered the isolate with NADC30-like viruses and it contains a discontinuous 131-aa deletion in NSP2 when compared to NADC30 strain. Notably, recombination analyses indicated that SCcd2020 is a multiple recombinant virus from NADC30-like, NADC34-like and JXA1-like strains, which is the first description of Chinese domestic HP-PRRSV involving the recombination event of an NADC34-like strain. Importantly, an animal challenge study in 4-week-old piglets showed that SCcd2020 causes high fever and severe hemorrhagic pneumonia with pulmonary consolidation and edema, and it has a high mortality rate (60%), which indicated that SCcd2020 is a highly pathogenic PRRSV strain. The study reports the emergence of a novel highly pathogenic NADC34-like recombinant strain, and it highlights the importance of monitoring newly emerging PRRSV strains in China.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Jifeng Yu
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China
| | - Yaoping Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Lu Xiao
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China
| | - Yandi Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Zhidong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| |
Collapse
|
9
|
Tu T, Pang M, Jiang D, Zhou Y, Wu X, Yao X, Luo Y, Yang Z, Ren M, Lu A, Zhang G, Yu Y, Wang Y. Development of a Real-Time TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:vetsci10040279. [PMID: 37104434 PMCID: PMC10141196 DOI: 10.3390/vetsci10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus first appeared in 2017 in a herd of pigs in Liaoning Province, China. The virus was subsequently found in other provinces. Given the potential for this virus to cause an epidemic, rapid, sensitive, and specific detection of NADC34-like PRRSV is required. The virus' ORF5 gene was artificially synthesized based on a Chinese reference strain, and specific primers/probes for the ORF5 gene were designed. Then, the amplified target fragment was cloned into the pMD19-T vector, and a series of diluted recombinant plasmids were used to generate a standard curve. An optimized real-time TaqMan RT-PCR method was established. The method was highly specific for NADC34-like PRRSV, without cross-reactions with other non-targeted pig viruses. The detection limit of this assay was 101 copies/μL. The method had an efficiency of 98.8%, a squared regression value (R2) of 0.999, and showed a linear range of 103-108 copies/μL of DNA per reaction. This method was shown to be analytically specific and sensitive with a low intra- and inter-assay coefficient of variation (<1.40%). A total of 321 clinical samples were tested using the established method, and four were shown to be positive (1.24%). This study confirmed the existence of NADC34-like PRRSV and HP-PRRSV co-infection in Sichuan and provided a promising alternative tool for the rapid detection of NADC34-like PRRSV.
Collapse
Affiliation(s)
- Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maonan Pang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu 611130, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Yu F, Dong C, Zhang Y, Che R, Xie C, Liu Y, Zhang Z, Li L, Chen X, Cai X, Wang G, Li Y. GrpE and ComD contribute to the adherence, biofilm formation, and pathogenicity of Streptococcus suis. Arch Microbiol 2023; 205:159. [PMID: 37005968 DOI: 10.1007/s00203-023-03503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Streptococcus suis is a major bacterial pathogen of swine and an emerging zoonotic agent that has to date resulted in substantial economic losses to the swine industry worldwide, and can cause persistent infection by forming biofilms. GrpE and histidine protein kinase ComD are important proteins implicated in the pathogenicity of S. suis, although whether they play roles in adhesion and biofilm formation has yet to be sufficiently clarified. In this study, we constructed grpE and comD deletion strains of S. suis by homologous recombination, and examined their cell adhesion and biofilm formation capacities compared with those of the wild-type strain. The pathogenicity of the grpE and comD deletion strains was evaluated using a mouse infection model, which revealed that compared with the wild-type, these deletion strains induced milder symptoms and lower bacteremia, as well as comparatively minor organ (brain, spleen, liver, and lung) lesions, in the infected mice. Moreover, the deletion of grpE and comD significantly reduced the pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) induction capacity of S. suis. Collectively, the findings of this study indicate that the GrpE and ComD proteins of Streptococcus suis play key roles in the adherence to PK-15 cells and the formation of biofilms, thereby contributing to the virulence of this pathogen.
Collapse
Affiliation(s)
- Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Zhao J, Xu Z, Xu T, Zhou Y, Li J, Deng H, Li F, Xu L, Sun X, Zhu L. Molecular Characterization of the Nsp2 and ORF5s of PRRSV Strains in Sichuan China during 2012-2020. Animals (Basel) 2022; 12:ani12233309. [PMID: 36496830 PMCID: PMC9736255 DOI: 10.3390/ani12233309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that poses a serious threat to the global pig industry. Sichuan Province is one of the largest pig breeding provinces in China. There is a lack of reports on the continuous surveillance and systematic analysis of prevalent strains of PRRSV in Sichuan Province in recent years. To fill this gap, a total of 539 samples were collected from 13 breeding regions in Sichuan during 2012-2020. The detection result showed that the positive rate of PRRSV was 52.32% (282/539). The ORF5s and Nsp2 were obtained and further analyzed, with Chinese reference strains downloaded from the GenBank. Phylogenetic analysis showed that the PRRSV strains sequenced in this study belonged to PRRSV-1 and PRRSV-2 (lineage 1, 3, 5 and 8). In total, 168 PRRSV-2 strains were selected for ORF5 analyses, and these strains were classified into sub-lineage 8.7 (HP-PRRSV), sub-lineage 5.1 (classical PRRSV), sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like) and sub-lineage 3.5 (QYYZ-like), accounting for 60.71% (102/168), 11.31% (19/168), 18.45% (31/168), 2.97% (5/168) and 6.55% (11/168) of the total analyzed strains, respectively. The Nsp2 of identified PRRSV strains exhibited a nucleotide identity of 44.5-100%, and an amino acid identity of 46.82-100%. The ORF5 of the identified PRRSV strains exhibited a nucleotide identity of 81.3-100%, and an amino acid identity of 78.5-100%. A sequence analysis of ORF5 revealed that the mutation sites of GP5 were mainly concentrated in HVR1 and HVR2 and the virulence sites. In summary, the HP-PRRSV, NADC30-like PRRSV, Classic-PRRSV, QYYZ-like PRRSV, NADC34-like PRRSV and PRRSV-1 strains exist simultaneously in pigs in Sichuan. NADC30-like PRRSV was gradually becoming the most prevalent genotype currently in Sichuan province. This study suggested that PRRSV strains in Sichuan were undergoing genomic divergence.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chia Tai Animal Husbandry Investment (Beijing) Co., Ltd., Beijing 101301, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Jiangling Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615012, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
12
|
Xu H, Xiang L, Tang YD, Li C, Zhao J, Gong B, Sun Q, Leng C, Peng J, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Zhang H, Song M. Genome-Wide Characterization of QYYZ-Like PRRSV During 2018–2021. Front Vet Sci 2022; 9:945381. [PMID: 35847645 PMCID: PMC9280713 DOI: 10.3389/fvets.2022.945381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the last decade, the emergence of QYYZ-like porcine reproductive and respiratory syndrome virus (PRRSV) has attracted increasing attention due to the high incidence of PRRSV mutation and recombination. However, the endemic status and genomic characteristics of the QYYZ-like strains are unclear. From 2018 to October 2021, 24 QYYZ-like PRRSV isolates were obtained from 787 PRRSV-positive clinical samples. Only one QYYZ-like positive sample was from a northern province, and the rest were from central and southern provinces. We selected 9 samples for whole-genome sequencing, revealing genome lengths of 15,008–15,316 nt. We retrieved all the available whole-genome sequences of QYYZ-like PRRSVs isolated in China from 2010 to 2021 (n = 28) from GenBank and analyzed them together with the new whole-genome sequences (n = 9). Phylogenetic tree analysis based on the ORF5 gene showed that all QYYZ-like PRRSV strains belonged to sublineage 3.5 but were clustered into three lineages (sublineage 1.8, sublineage 3.5, and sublineage 8.7) based on whole-genome sequences. Genomic sequence alignment showed that QYYZ-like strains, have characteristic amino acids insertions or deletions in the Nsp2 region (same as NADC30, JXA1 and QYYZ) and that thirteen strains also had additional amino acid deletions, mostly between 468 and 518 aa. Moreover, QYYZ-like strains (sublineage 3.5) have seven identical characteristic amino acid mutations in ORF5. Recombination analysis revealed that almost all QYYZ-like complete genome sequences (36/37) were products of recombination and mainly provided structural protein fragments (GP2-N) for the recombinant strains. Overall, QYYZ-like strains were mainly prevalent in central and southern China from 2018 to 2021, and these strains provided recombinant fragments in the PRRSV epidemic in China.
Collapse
Affiliation(s)
- Hu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insect Bioreactors, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Hongliang Zhang
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Mingxin Song
| |
Collapse
|
13
|
Gu H, Zheng S, Han G, Yang H, Deng Z, Liu Z, He F. Porcine Reproductive and Respiratory Syndrome Virus Adapts Antiviral Innate Immunity via Manipulating MALT1. mBio 2022; 13:e0066422. [PMID: 35467421 PMCID: PMC9239189 DOI: 10.1128/mbio.00664-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
To fulfill virus replication and persistent infection in hosts, viruses have to find ways to compromise innate immunity, including timely impedance on antiviral RNases and inflammatory responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen causing immune suppression. MALT1 is a central immune regulator in both innate and adaptive immunity. In this study, MALT1 was confirmed to be induced rapidly upon PRRSV infection and mediate the degradation of two anti-PRRSV RNases, MCPIP1 and N4BP1, relying on its proteolytic activity, consequently facilitating PRRSV replication. Multiple PRRSV nsps, including nsp11, nsp7β, and nsp4, contributed to MALT1 elicitation. Interestingly, the elevated expression of MALT1 began to decrease once intracellular viral expression reached a high enough level. Higher infection dose brought earlier MALT1 inflection. Further, PRRSV nsp6 mediated significant MALT1 degradation via ubiquitination-proteasome pathway. Downregulation of MALT1 suppressed NF-κB signals, leading to the decrease in proinflammatory cytokine expression. In conclusion, MALT1 expression was manipulated by PRRSV in an elaborate manner to antagonize precisely the antiviral effects of host RNases without excessive and continuous activation of inflammatory responses. These findings throw light on the machinery of PRRSV to build homeostasis in infected immune system for viral settlement. IMPORTANCE PRRSV is a major swine pathogen, suppresses innate immunity, and causes persistent infection and coinfection with other pathogens. As a central immune mediator, MALT1 plays essential roles in regulating immunity and inflammation. Here, PRRSV was confirmed to manipulate MALT1 expression in an accurate way to moderate the antiviral immunity. Briefly, multiple PRRSV nsps induced MALT1 protease to antagonize anti-PRRSV RNases N4BP1 and MCPIP1 upon infection, thereby facilitating viral replication. In contrast, PRRSV nsp6 downregulated MALT1 expression via ubiquitination-proteasome pathway to suppress the inflammatory responses upon infection aggravation, contributing to immune defense alleviation and virus survival. These findings revealed the precise expression control on MALT1 by PRRSV for antagonizing antiviral RNases, along with recovering immune homeostasis. For the first time, this study enlightens a new mechanism of PRRSV adapting antiviral innate immunity by modulating MALT1 expression.
Collapse
Affiliation(s)
- Han Gu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Suya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Haotian Yang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zhuofan Deng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
14
|
Liu J, Lai L, Xu Y, Yang Y, Li J, Liu C, Hunag C, Wei C. Evolutionary Analysis of Four Recombinant Viruses of the Porcine Reproductive and Respiratory Syndrome Virus From a Pig Farm in China. Front Vet Sci 2022; 9:933896. [PMID: 35812888 PMCID: PMC9270021 DOI: 10.3389/fvets.2022.933896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens causing substantial economic losses to the Chinese swine industry. In this study, we analyzed the complete genome sequences of four PRRSV isolates (PRRSV2/CN/SS0/2020, PRRSV2/CN/SS1/2021, PRRSV2/CN/L3/2021, and PRRSV2/CN/L4/2020) isolated from a single pig farm from 2020 to 2021. The genomes of the four isolates were 14,962–15,023 nt long, excluding the poly (A) tails. Comparative analysis of the genome sequences showed that the four isolates shared 93.2–98.1% homology and they had no close PRRSV relatives registered in the GenBank (<92%). Furthermore, PRRSV2/CN/SS0/2020 and PRRSV2/CN/SS1/2021 had characteristic 150-aa deletions (aa481+aa537-566 +aa628–747) that were identical to the live attenuated virus vaccine strain TJM-F92 (derived from the HP-PRRSV TJ). Further analysis of the full-length sequences suggests that the four isolates were natural recombinant strains between lineages 1 (NADC30-like), 3 (QYYZ-like), and 8.7 (JXA1-like). Animal experiments revealed discrepancies in virulence between PRRSV2/CN/SS0/2020 and PRRSV2/CN/L3/2021. The strain with high homology to HP-PRRSV demonstrates higher pathogenicity for pigs than the other isolate with low homology to HP-PRRSV. Taken together, our findings suggest that PRRSVs have undergone genome evolution by recombination among field strains/MLV-like strains of different lineages.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jiankui Liu
| | - Liling Lai
- College of Life Sciences, Longyan University, Longyan, China
| | - Ye Xu
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Yang
- College of Life Sciences, Longyan University, Longyan, China
| | - Jiarui Li
- College of Life Sciences, Longyan University, Longyan, China
| | - Chen Liu
- College of Life Sciences, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuiqin Hunag
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Chunhua Wei
| |
Collapse
|
15
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Xiang L, Xu H, Li C, Tang YD, An TQ, Li Z, Liu C, Song S, Zhao J, Leng C, Qu X, Sun Y, Peng J, Wang Q, Cai X, Tian ZJ, Zhang H. Long-Term Genome Monitoring Retraces the Evolution of Novel Emerging Porcine Reproductive and Respiratory Syndrome Viruses. Front Microbiol 2022; 13:885015. [PMID: 35495717 PMCID: PMC9044490 DOI: 10.3389/fmicb.2022.885015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the swine industry worldwide. In China, novel PRRSVs have frequently emerged in recent years, but the evolutionary relationship among these viruses has remained unclear. In the present study, a 4-year PRRSV genome-monitoring study was performed on samples from a pig farm. We observed that NADC30-like PRRSVs with higher mutation rates replaced HP-PRRSVs as the epidemic strains. We monitored the variation in the same PRRSV strain evolved in a pig herd over 2 years and observed that the low genomic similarity of NADC30-like PRRSVs results from rapid mutation. We also showed that recombination events between NADC30-like and QYYZ-like PRRSVs resulted in the complex recombination patterns of PRRSVs, which have formed gradually over time. Furthermore, recombination of the same strain can occur at different locations and increase the diversity of recombination events. Overall, these findings interpret the evolutionary patterns of novel and emerging PRRSVs, information that is crucial for PRRSV control.
Collapse
Affiliation(s)
- Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuaijie Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | | | - Yingjun Sun
- Hanswine FoodGroupCo., Ltd., Maanshan, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Fang K, Liu S, Li X, Chen H, Qian P. Epidemiological and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in South China Between 2017 and 2021. Front Vet Sci 2022; 9:853044. [PMID: 35464348 PMCID: PMC9024240 DOI: 10.3389/fvets.2022.853044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major threat to the swine industry in China and has caused enormous losses every year. To monitor the epidemiological and genetic characteristics of PRRSV in South China, 6,795 clinical samples from diseased pigs were collected between 2017 and 2021, and 1,279 (18.82%) of them were positive for PRRSV by RT-PCR detecting the ORF5 gene. Phylogenetic analysis based on 479 ORF5 sequences revealed that a large proportion of them were highly-pathogenic PRRSVs (409, 85.39%) and PRRSV NADC30-like strains (66, 13.78%). Furthermore, 93.15% of these highly-pathogenic strains were found to be MLV-derived. We next recovered 11 PRRSV isolates from the positive samples and generated the whole genome sequences of them. Bioinformatic analysis showed that seven isolates were MLV-derived. Besides, six isolates were found to be recombinant strains. These eleven isolates contained different types of amino acid mutations in their GP5 and Nsp2 proteins compared to those of the PRRSVs with genome sequences publicly available in GenBank. Taken together, our findings contribute to understanding the prevalent status of PRRSV in South China and provide useful information for PRRS control especially the use of PRRSV MLV vaccines.
Collapse
Affiliation(s)
- Kui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- *Correspondence: Ping Qian
| |
Collapse
|
18
|
Zhao J, Xu L, Xu Z, Deng H, Li F, Sun X, Zhou Y, Zhu L. Emergence and spread of NADC34-like PRRSV in Southwest China. Transbound Emerg Dis 2022; 69:e3416-e3424. [PMID: 35090082 DOI: 10.1111/tbed.14463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 11/27/2022]
Abstract
In recent years, NADC34-like PRRSV had a strong impact on the pig industry in the United States and Peru; it was also detected in northeastern China in 2017. In this study, we conducted a retrospective survey of NADC34-like PRRSV in Southwest China from 2016 to 2020. Five NADC34-like PRRSV strains were detected in samples and their whole genomes were sequenced, designated as CHSCMY-22019, CHSCYB-32020, CHSCMS-42020 and CHSCLS-22020. This is the first discovery and report of an NADC34-like PRRSV strain in Southwest China. Phylogenetic tree analysis based on the whole genome showed that the five NADC34-like PRRSV strains belonged to sub-lineage 1.5 of PRRV-2. They had 100 aa deletions in the Nsp2 hypervariable region of VR2332, located at 329 to 428 aa, similar to the US isolate IA/2014/NADC34. Recombination analysis showed that CHSCCD-42020 strain was the recombinant strain of QYYZ strain and IA/2014/NADC34 strain in China. The emergence of NADC34-like PRRSV strains in Southwest China indicates a potential threat to PRRS prevention and control in pigs. This study improves our understanding of the epidemic status and genetic variation of NADC34-like PRRSV strains in China. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan, Animal Science Academy, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
19
|
Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Broad Antiviral Effects of MCPIP1 by Inducing Interleukin-17 Expression. J Virol 2021; 95:e0111921. [PMID: 34468170 DOI: 10.1128/jvi.01119-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monocyte chemotactic protein-induced protein 1 (MCPIP1) is an inflammatory regulator in immune response and has broad antiviral effects by targeting viral RNA. Porcine reproductive and respiratory syndrome virus (PRRSV), a major viral pathogen in pigs, causes immune suppression leading to coinfection of swine pathogens, but the mechanisms are not fully clarified. In this study, MCPIP1 expression was found to be significantly upregulated in lungs of PRRSV-infected piglets, as well as in Marc-145 and porcine pulmonary alveolar macrophage (PAM) cells upon PRRSV stimulation. MCPIP1 overexpression significantly inhibited PRRSV replication, while MCPIP1 knockdown increased the virus titer. Various mutations in RNase functional domains of MCPIP1 impaired the inhibitory activity against PRRSV, while those in deubiquitinase domains failed to do so. MCPIP1 expression started to decrease from 60 h after PRRSV infection in PAMs. Meanwhile, infection with higher dose of PRRSV further downregulated MCPIP1, indicating the antagonizing effects from PRRSV against MCPIP1. Moreover, it was confirmed that MCPIP1 expression was downregulated in 3D4 cells with either interleukin-17 (IL-17) or nsp11 overexpression, while IL-17 inhibitor abolished the decrease of MCPIP1 caused by nsp11, indicating nsp11 employs IL-17 induction to inhibit MCPIP1. Furthermore, the PRRSV nsp11 mutant with a deficiency in IL-17 induction showed the recovered expression of MCPIP1 in infected cells, inspiring a strategy for virus attenuation. This is the first report about the role of MCPIP1 against PRRSV and the function of PRRSV nsp11 against innate immunity to facilitate virus replication via IL-17. The study not only illuminates PRRSV infection machinery but also enlightens alternative antiviral strategies, such as vaccine candidates. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immunity and leads to coinfection of swine pathogens. Monocyte chemotactic protein-induced protein 1 (MCPIP1) is a broad-spectrum host antiviral protein. Therefore, to further clarify the mechanism of PRRSV against innate immunity, we explored the relationship between MCPIP1 and PRRSV infection. The results showed that MCPIP1 inhibited PRRSV infection in the early stage of virus infection. Importantly, PRRSV nsp11 subsequently employed IL-17 induction to suppress MCPIP1 expression and antagonized anti-PRRSV effects. Furthermore, PRRSV with mutation of nsp11 S74A failed to induce MCPIP1 reduction. These findings confirmed the function of MCPIP1 against PRRSV and revealed that PRRSV nsp11 plays an important role in virus against innate immunity. This study enlightens a new strategy to develop safer attenuated vaccines against PRRSV by nsp11 mutation.
Collapse
|
20
|
Zhao J, Zhu L, Huang J, Yang Z, Xu L, Gu S, Huang Y, Zhang R, Sun X, Zhou Y, Xu Z. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2020; 7:697-704. [PMID: 33277984 PMCID: PMC8136965 DOI: 10.1002/vms3.402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Liu J, Xu Y, Lin Z, Fan J, Dai A, Deng X, Mao W, Huang X, Yang X, Wei C. Epidemiology investigation of PRRSV discharged by faecal and genetic variation of ORF5. Transbound Emerg Dis 2020; 68:2334-2344. [PMID: 33113239 DOI: 10.1111/tbed.13894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023]
Abstract
To obtain more information of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) transmission via faeces in/between farms, 360 swine faecal samples were randomly collected from different farms in China from 2017 to 2019. Sixty-two ORF5 genes were amplified by PCR from 120 positive samples identified by real-time RT-PCR and further characterized by sequencing. Phylogenetic analysis based on the ORF5 gene revealed that these strains can be divided into four lineages: lineage 1 (NADC30-like), lineage 3 (QYYZ-like), lineage 5.1 (VR2332-like) and lineage 8.7 (JXA1-like), with 62.9% (39/62) NADC30-like virus, 21% (13/62) QYYZ-like virus, 1.6% (1/62) VR2332-like virus and 14.5% (9/62) for JAX1-like virus. In particular, 14 PRRSVs including lineage 1, 5.1 and 8.7 can be isolated from 120 positive faecal samples, which further suggests that faecal transmission may be an important factor in the spread of PRRSV in farms. Full-length genome sequencing analysis showed that 14 isolates share 83.1%-97.7% homology with each other and 82.3%-96.1% identity with NADC30, 83.2%-99.7% with VR2332, 79.6%-87.2% with QYYZ and 82.6%-98.9% with JXA1 and CH-1a, and only 60.1%-60.7% with LV. Recombination events were observed in the six out of 14 strains. Collectively, the data of this study are useful for understanding the spread of PRRSV via faeces. Additionally, the virus was isolated from positive faecal samples, suggesting that faecal transmission may be an important factor in the spread of PRRSV in farms.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Ye Xu
- College of Life Sciences, Longyan University, Longyan, China.,College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhifeng Lin
- College of Life Sciences, Longyan University, Longyan, China.,College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jialin Fan
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Xiaoying Deng
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Wan Mao
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Xiaozi Huang
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| |
Collapse
|
22
|
Wang J, Lin S, Quan D, Wang H, Huang J, Wang Y, Ren T, Ouyang K, Chen Y, Huang W, Luo T, Wei Z. Full Genomic Analysis of New Variants of Porcine Reproductive and Respiratory Syndrome Virus Revealed Multiple Recombination Events Between Different Lineages and Sublineages. Front Vet Sci 2020; 7:603. [PMID: 33134336 PMCID: PMC7511543 DOI: 10.3389/fvets.2020.00603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has had a devastating impact on the pig industry in China, and monitoring its genetic diversity is important for epidemiological surveillance and understanding its evolution. Here, we determine the complete genome sequences of two PRRSV strains, GXYL1403 and GXNN1839. Comparative, phylogenetic, and recombination detection program analyses show that the two isolates are recombinant strains with large-fragment amino acid deletions in nsp2. GXYL1403 possesses a unique deletion region of 124 amino acids in nsp2, and GXNN1839 contains a deletion of 131 amino acids in nsp2 as compared with VR2332. Further analysis of the full-length sequence suggests that GXYL1403 is a natural recombinant between sublineages 8.1 (CH-1a like) and 8.3 (JXA1-like). The recombination site of GXYL1403 is located in nsp9–nsp12 (8961nt−11181nt). GXNN1839 is a natural recombinant between the lineage 5 (VR-2332-like) and lineage 1 (NADC30-like) strains. The recombination events occurred in nsp9 (7872nt-8162nt) and in ORF2 (12587nt−13282nt) in the genome of GXNN1839. These results provide new evidence that PRRSV strains circulating in the environment have undergone recombination among the different lineages or sublineages of field strains, and these add to our understanding of RNA combination events that occur in PRRSV.
Collapse
Affiliation(s)
- Jinglong Wang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siyuan Lin
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongqun Quan
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Wang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiabin Huang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxu Wang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tongwei Ren
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tingrong Luo
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
23
|
Kedkovid R, Sirisereewan C, Thanawongnuwech R. Major swine viral diseases: an Asian perspective after the African swine fever introduction. Porcine Health Manag 2020; 6:20. [PMID: 32637149 PMCID: PMC7336096 DOI: 10.1186/s40813-020-00159-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Asia is a major pig producer of the world, and at present, African swine fever virus (ASFV) continues to significantly impact the Asian pig industry. Since more than 50% of the world’s pig population is in Asia, ASFV outbreaks in Asia will affect the global pig industry. Prior to the introduction of ASF, several outbreaks of major swine viruses occurred in Asia over the last two decades, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and foot and mouth disease virus (FMDV). The rapid spreading of those viruses throughout Asia involve many factors such as the various pig production systems and supply chains ranging from back-yard to intensive industrial farms, animal movement and animal product trading within and among countries, and consumer behaviors. ASF has notoriously been known as a human-driven disease. Travelers and international trading are the major ASFV-carriers for the transboundary transmission and introduction to naïve countries. Globalization puts the entire pig industry at risk for ASF and other infectious diseases arising from Asian countries. Disease control strategies for the various pig production systems in Asia are challenging. In order to ensure future food security in the region and to prevent the deleterious consequences of ASF and other major viral disease outbreaks, disease control strategies and production systems must be improved and modernized.
Collapse
Affiliation(s)
- Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand.,Swine Reproduction Research Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
24
|
Sun YK, Chen YJ, Cai Y, Li Q, Xie JX, Liang G, Gao Q, Yu ZQ, Lu G, Huang LZ, Ma CQ, Gong L, Wang H, Shi M, Zhang GH. Insights into the evolutionary history and epidemiological characteristics of the emerging lineage 1 porcine reproductive and respiratory syndrome viruses in China. Transbound Emerg Dis 2020; 67:2630-2641. [PMID: 32386249 DOI: 10.1111/tbed.13613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
The newly emerged lineage 1 porcine reproductive and respiratory syndrome viruses (PRRSVs) (especially the NADC30-like and NADC34-like viruses) have posed a direct threat to the Chinese pig industry since 2013. The phylogenetic, epidemic, and recombinant properties of these viruses have not yet systematically analysed in China. This report presents regular surveillance and field epidemiological studies for PRRSV across China from 2007 to 2019. From over 4,000 detected clinical samples, 70 open reading frame five sequences and four complete genomes of lineage 1 viruses were successfully obtained. Combined with global data, we conducted an extensive and systematic molecular phylogeny analysis using a maximum likelihood tree. The Chinese lineage 1 viruses were clustered, and their temporal and spatial distribution was further explored. Multiple viral introductions of lineage 1 virus from the United States to China were detected, and some became endemic in China. There are three sub-lineage 1 clusters: lineage 1.5 (NADC34-like), lineage 1.6 and New Intro cluster (NADC30-like). These viruses show high genetic diversity and a wide distribution in China, with Henan Province showing the highest diversity. Moreover, Chinese lineage 1 viruses have developed an endemic NADC30-like cluster. The demographic feature of this cluster showed a more or less constant population expansion history with a recent decreasing trend. Moreover, the genome recombination of Chinese lineage 1 with two dominant clusters (Chinese HP-PRRSVs: lineage 8.7 and VR2332-like: lineage 5.1) was frequently detected, both of which have commercial vaccine strains available. Furthermore, recombination hotspots were discovered near NSP9 and ORF2-4 regions of the genome. Overall, these findings provide important insights into the evolution and geographical diversity of Chinese lineage 1 PRRSV. These results will facilitate the development of programmes for the control and prevention of the emerging lineage 1 viruses in China.
Collapse
Affiliation(s)
- Yan-Kuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yong-Jie Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yu Cai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qi Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie-Xiong Xie
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Guan Liang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qi Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhi-Qing Yu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gang Lu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | | | - Chun-Quan Ma
- Department of Animal Medicine, Foshan University, Foshan, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gui-Hong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Han G, Lei K, Xu H, He F. Genetic characterization of a novel recombinant PRRSV2 from lineage 8, 1 and 3 in China with significant variation in replication efficiency and cytopathic effects. Transbound Emerg Dis 2020; 67:1574-1584. [PMID: 31975574 DOI: 10.1111/tbed.13491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/18/2020] [Indexed: 11/28/2022]
Abstract
There are four major porcine reproductive and respiratory syndrome virus 2 (PRRSV2) lineages circulating in China based on classification system, including lineages 1 (NADC30-like), 3 (QYYZ-like), 5.1 (VR2332-like) and 8 (JXA1-like/CH-1a-Like), which leads to the potential recombination. In the present study, a novel variant of PRRSV2 strain named JS18-3 was isolated from piglets suffering severe breathing difficulties in Jiangsu Province of China in 2018. Full-length genome analysis indicated that JS18-3 shared 86.5%, 87.9%, 84.2%, 82.2% and 86.4% nucleotide similarity with PRRSVs CH-1a, JXA1, VR2332, QYYZ and NADC30, respectively. 4871-6635 of JS18-3 shared the highest identity of 99.3% in nucleotide sequence with HP-PRRSV representative strain JXA1 indicating ongoing evolution to HP-PRRSV. JS18-3 was classified into classical lineage 8 of PRRSV2 based on phylogenetic analysis of complete genome and ORF5. Genomic break points in structural (ORF3) and non-structural (NSP2, NSP3) regions of genomes were detected in recombination analysis. JS18-3 is a recombinant isolate from lineages 8, 1 and 3. Replication enhancement and severe cytopathic effects caused by JS18-3 were observed in Marc-145 cells and porcine alveolar macrophages (PAMs) as compared to JX07, a typical strain of lineage 8. Pathogenicity results indicated that piglets inoculated with JS18-3 presented persistent fever, dyspnoea, serious microscopic lung lesions and lymph node congestion. The study suggests that lineage 8 of PRRSV2 is involved in continuing evolution by genetic recombination and mutation leading to outbreaks in vaccinated pigs in China.
Collapse
Affiliation(s)
- Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaixia Lei
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Efficacy Evaluation of Two Commercial Vaccines Against a Recombinant PRRSV2 Strain ZJnb16-2 From Lineage 8 and 3 in China. Pathogens 2020; 9:pathogens9010059. [PMID: 31952177 PMCID: PMC7168615 DOI: 10.3390/pathogens9010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
From 2010, novel recombinant lineage 3 of porcine reproductive and respiratory syndrome virus 2 (PRRSV2) has continuously emerged China, which has brought about clinical outbreaks of the disease. Previously, a PRRSV2 strain named ZJnb16-2 was identified as a recombinant virus from lineage 8 and 3. In this study, two modified-live vaccines VR2332 MLV and HuN4-F112, which belong to lineage 5 and 8 respectively, were used for efficacy evaluation against the challenge of ZJnb16-2. Piglets vaccinated with HuN4-F112 exhibited temporary fever, higher average daily weight gain, and mild clinical signs as compared to VR2332 MLV vaccinated and unvaccinated piglets upon ZJnb16-2 challenge. Both vaccines could inhibit virus replication in piglets at 21days post challenge (DPC). Cross-reactivity of interferon (IFN)-γ secreting cells against ZJnb16-2 were detected in both vaccinated piglets. The number of IFN-γ secreting cells against ZJnb16-2 in the vaccination group exhibited sustaining elevation after challenge. Results demonstrated that both vaccines provided partial protection against ZJnb16-2 infection. A cross-neutralization antibody against ZJnb16-2 was not detected in any vaccinated piglet before challenge. A low neutralizing antibody titer against ZJnb16-2 was detected after challenge. Besides, all the vaccinated piglets suffered from different degrees of lung pathological lesions, indicating neither VR2332 MLV nor HuN4-F112 provided full protection against ZJnb16-2. This study provides valuable guidelines to control the recombinant virus from lineage 8 and 3 infection with MLV vaccines in the field.
Collapse
|
27
|
Liu J, Wei C, Lin Z, Xia W, Ma Y, Dai A, Yang X. Full genome sequence analysis of a 1-7-4-like PRRSV strain in Fujian Province, China. PeerJ 2019; 7:e7859. [PMID: 31637126 PMCID: PMC6800524 DOI: 10.7717/peerj.7859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
PRRS virus (PRRSV) has undergone rapid evolution and resulted in immense economic losses worldwide. In the present study, a PRRSV strain named FJ0908 causing high abortion rate (25%) and mortality (40%) was detected in a swine herd in China. To determine if a new PRRSV genotype had emerged, we characterized the genetic characteristics of FJ0908. Phylogenetic analysis indicated that FJ0908 was related to 1-7-4-like strains circulating in the United States since 2014. Furthermore, the ORF5 sequence restriction fragment length polymorphism (RFLP) pattern of FJ0908 was 1-7-4. Additionally, FJ0908 had a 100 aa deletion (aa329-428) within nsp2, as compared to VR-2332, and the deletion pattern was consistent with most of 1-7-4 PRRSVs. Collectively, the data of this study contribute to the understanding of 1-7-4-like PRRSV molecular epidemiology in China.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Zhifeng Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xia
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ying Ma
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| |
Collapse
|
28
|
Zhang WL, Zhang HL, Xu H, Tang YD, Leng CL, Peng JM, Wang Q, An TQ, Cai XH, Fan JH, Tian ZJ. Two novel recombinant porcine reproductive and respiratory syndrome viruses belong to sublineage 3.5 originating from sublineage 3.2. Transbound Emerg Dis 2019; 66:2592-2600. [PMID: 31379138 DOI: 10.1111/tbed.13320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an agent of porcine reproductive and respiratory syndrome (PRRS), which causes substantial economic losses to the swine industry. PRRSV displays rapid variation, and five lineages coexist in mainland China. Lineage 3 PRRSVs emerged in mainland China in 2005 and prevailed in southern China after 2010. In the present study, two lineage 3 PRRSV strains, which are named SD110-1608 and SDWH27-1710, were isolated from northern China in 2017. To explore the characteristics and origins of the two strains, we divided lineage 3 into five sublineages (3.1-3.5) based on 146 open reading frame (ORF) 5 sequences. Both strains and the strains isolated from mainland China were classified into sublineage 3.5. Lineage 3 PRRSVs isolated from Taiwan and Hong Kong were classified into sublineages 3.1-3.3 and sublineage 3.4, respectively. Recombination analysis revealed that SD110-1608 and SDWH27-1710 were derived from recombination of QYYZ (major parent strain) and JXA1 (minor parent strain). Sequence alignment showed that SD110-1608 and SDWH27-1710 shared a 36-aa insertion in Nsp2 with QYYZ isolated from Guangdong Province in 2010. Based on the evolutionary relationship among GP2a, GP3, GP4, GP5 and N proteins between sublineages 3.2 (FJ-1) and 3.5 (FJFS), we speculated that sublineage 3.5 (mainland China) originated from sublineage 3.2 (Taiwan, China). This study provides important information regarding the classification and transmission of lineage 3 PRRSVs.
Collapse
Affiliation(s)
- Wen-Li Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao-Liang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
29
|
Zhang X, Li Y, Xiao S, Yang X, Chen X, Wu P, Song J, Ma Z, Cai Z, Jiang M, Zhang Y, Yang Y, Zhang Z, Zhou Z, Sheng J, Wang H. High-frequency mutation and recombination are responsible for the emergence of novel porcine reproductive and respiratory syndrome virus in northwest China. Arch Virol 2019; 164:2725-2733. [PMID: 31468140 DOI: 10.1007/s00705-019-04373-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most highly infectious diseases in the pig industry, resulting in enormous economic losses worldwide. In this study, a PRRS virus (PRRSV) strain was isolated from primary porcine alveolar macrophage cells in Xinjiang in northwest China. This new strain was sequenced and designated as XJzx1-2015, and its sequence was then compared to those of other representative PRRSV strains from around the world. Complete genomic characterisation showed that the full-length nucleotide sequence of XJzx1-2015 exhibited low-level similarity to NB/04 (91.6%), JXA1 (90.5%), CH-1a (90.2%), VR-2332 (86.9%), QYYZ (85.7%), and JL580 (82.2%), with the highest similarity to HK13 (91.7%) sequence identity. Nonstructural protein 2 (NSP2) and glycosylated protein (GP) 2 of XJzx1-2015 had deletions of five and two amino acids, respectively, corresponding to strain VR-2332 positions 475-479 and 173-174. Phylogenetic analysis based on complete genome sequences showed that XJzx1-2015 and four other strains from China formed a new subgenotype closely related to other sublineage 8.7 (JXA1-like) strains belonging to the North American genotype. However, phylogenetic analysis based on NSP2 and GP5 showed that XJzx1-2015 clustered with sublineage 8.7 (JXA1-like, CH-1a-like) and lineage 3 (QYYZ-like) strains, respectively. Recombination analysis indicated that XJzx1-2015 is an intersubgenotype recombinant of CH-1a-like and QYYZ-like strains. Overall, our findings demonstrate that XJzx1-2015 is a novel PRRSV strain with a significantly high frequency of mutation and a recombinant between lineage 3 and sublineage 8.7 identified in northwest China. These results provide important insights into PRRSV evolution.
Collapse
Affiliation(s)
- Xun Zhang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yan Li
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Shengzhong Xiao
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Xia Yang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Xinkai Chen
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Peng Wu
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Jiawei Song
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Zhenguo Ma
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Zhuoxuan Cai
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Mengmeng Jiang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Yanhong Zhang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Yan Yang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Zhe Zhang
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Ziheng Zhou
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, No. 2 221 North Fourth Road, Shihezi, 832000, Xinjiang, China.
| | - Heng Wang
- College of veterinary medicine, South China Agricultural University, Guangzhou, 510000, Guangdong, China.,South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| |
Collapse
|
30
|
Zhou L, Kang R, Zhang Y, Yu J, Xie B, Chen C, Li X, Chen B, Liang L, Zhu J, Tian Y, Yang X, Wang H. Emergence of two novel recombinant porcine reproductive and respiratory syndrome viruses 2 (lineage 3) in Southwestern China. Vet Microbiol 2019; 232:30-41. [PMID: 31030842 DOI: 10.1016/j.vetmic.2019.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
The lineage 3 of porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) was first reported in mainland China in 2010 and it has spread rapidly in recent years. Here, two novel lineage 3 strains of PRRSV-2 were isolated from diseased pigs in Southwestern China during 2017-2018, and were designated as GZgy17 and SCya18. The complete genomes of the two isolates were then determined, and sequence alignment revealed that GZgy17 had the same discontinuous 30-amino acid (aa) deletion in NSP2 as JXA1, while SCya18 contained the discontinuous 131-aa deletion in NSP2 identical to that of NADC30, when compared to the strain VR-2332. Notably, GZgy17 contained an additional 19-aa deletion in NSP2, and SCya18 had a unique 3-nt deletion in its 3'UTR. Homology and phylogenetic analysis showed that GZgy17 and SCya18 shared low nucleotide homology (91.2-92.0%) with QYYZ and were classified into a new cluster of lineage 3 strains based on ORF5 genotyping. Recombination analyses revealed that GZgy17 and SCya18 both originated from a SH/CH/2016-like (lineage 3) strain and had recombined with a JXA1-like (lineage 8) and a NADC30-like (lineage 1) strain, respectively. Furthermore, we compared the virulence of the two strains in 4-week-old piglets. The results showed that GZgy17 caused mortality rates of 20% and exhibited higher pathogenicity in piglets compared to SCya18. Our findings suggest that recombination might be responsible for the variations in pathogenicity of lineage 3 strains of PRRSV-2 and highlight the importance of surveillance of this lineage in China.
Collapse
Affiliation(s)
- Long Zhou
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, 7# Niusha Road, Chengdu 610066, China
| | - Yi Zhang
- Sichuan Provincial Center for Animal Disease Control and Prevention, Wuhou District, Chengdu 610041, China
| | - Jifeng Yu
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, 7# Niusha Road, Chengdu 610066, China
| | - Bo Xie
- Chengdu Chia Tai Agro-industry & Food Co.,ltd, Animal Healthy Disease Service, Wenjiang District, Chengdu 610081, China
| | - Changying Chen
- Chengdu Chia Tai Agro-industry & Food Co.,ltd, Animal Healthy Disease Service, Wenjiang District, Chengdu 610081, China
| | - Xingyu Li
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, 7# Niusha Road, Chengdu 610066, China
| | - Bin Chen
- Sichuan Provincial Center for Animal Disease Control and Prevention, Wuhou District, Chengdu 610041, China
| | - Luqi Liang
- Sichuan Provincial Center for Animal Disease Control and Prevention, Wuhou District, Chengdu 610041, China
| | - Jiawen Zhu
- Institute of Animal science, Chengdu Academy of Agriculture and Forestry Sciences, Wenjiang District, Chengdu 611130, China
| | - Yiming Tian
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China
| | - Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 29# Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
31
|
Liu J, Wei C, Lin Z, Fan J, Xia W, Dai A, Yang X. Recombination in lineage 1, 3, 5 and 8 of porcine reproductive and respiratory syndrome viruses in China. INFECTION GENETICS AND EVOLUTION 2018; 68:119-126. [PMID: 30529558 DOI: 10.1016/j.meegid.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important viral swine diseases, resulting in immense economic losses in Chinese pig industry. Currently, four major lineages: lineage 1 (NADC30-like), 3 (QYYZ-like), 5.1 (VR2332-like) and 8.7 (JXA1-like) of type 2 PRRSV (North American type) have been circulating in China based on classification system, which have caused concern about the potential of virus recombination. In the present study, a novel variant of PRRSV strain named FJLIUY-2017 was isolated from abortion rate (25%) in pregnant gilts in Fujian Province in China in 2017. To further our knowledge about the novel virus strain, we characterized the complete genome of FJLIUY-2017. Comparison to PRRS sequences in GenBank confirmed the absence of close relatives (<92%), but indicated FJLIUY-2017 belonged to NADC30-like PRRSV. The full length of FJLIUY-2017 was determined to be 15017 nucleotides (nt), excluding the poly(A) tail, shared 86.2-86.6% identity with JXA1-like strains (JXA1, TJ and FJYR), 88.9-90.6% with NADC30-like PRRSVs (NADC30, FJZ03 and CHsx1401), 86.4-86.5% with VR2332-like (VR2332, RespPRRS MLV and BJ-4) and only 60.8% with LV (European type). Recombination analyses revealed genomic breakpoints in structural (ORF3, ORF4 and ORF7) and nonstructural (Nsp1, Nsp2, Nsp6, Nsp9, Nsp11 and Nsp12) regions of the genomes with evidence for recombination events between lineages 1, 3, 5.1 and 8.7. Taken altogether, the results of our study provide further confirmation that PRRSV is prone to undergo recombination events. Thus, it is critical to monitor PRRSV evolution in China and establish an effective strategy for the control of PRRS.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China.
| | - Chunhua Wei
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China
| | - Zhifeng Lin
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 5002, China
| | - Jianlin Fan
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China
| | - Wei Xia
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China
| | - Xiaoyan Yang
- College of Life Sciences of Longyan University, Longyan, Fujian Province 364012, China; Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province 364012, China.
| |
Collapse
|
32
|
Zhou L, Kang R, Yu J, Xie B, Chen C, Li X, Xie J, Ye Y, Xiao L, Zhang J, Yang X, Wang H. Genetic Characterization and Pathogenicity of a Novel Recombined Porcine Reproductive and Respiratory Syndrome Virus 2 among Nadc30-Like, Jxa1-Like, and Mlv-Like Strains. Viruses 2018; 10:v10100551. [PMID: 30304818 PMCID: PMC6213465 DOI: 10.3390/v10100551] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022] Open
Abstract
Recombination among porcine reproductive and respiratory syndrome viruses (PRRSVs), coupled with point mutations, insertions, and deletions occurring in the genome, is considered to contribute to the emergence of new variants. Here, we report the complete genome sequences of a PRRSV field strain, designated SCN17, isolated from a RespPRRS MLV-vaccinated piglet in China in 2017. Sequence alignment revealed that SCN17 had discontinuous 131-amino acid (111 + 1 + 19-aa) deletion in the NSP2-coding region identical to that of NADC30 when compared to VR-2332. Notably, the strain, SCN17, contained an additional 1-aa deletion in NSP2, a 1-aa deletion in ORF5, and a unique 3-nt deletion in the 3′-UTR. Phylogenetic analysis showed that SCN17 clustered into NADC30-like lineage based on ORF5 genotyping, whereas it belonged to an inter-lineage between the NADC30-like and VR-2332-like lineages as established based on the full-length genome. Importantly, the SCN17 was identified as a novel virus recombined between a NADC30-like (moderately pathogenic), a JXA1-like (highly pathogenic), and an attenuated vaccine strain, RespPRRS MLV (parental strain VR-2332). Furthermore, we tested its pathogenicity in piglets. SCN17 infection caused a persistent fever, moderate interstitial pneumonia, and increased the viremia and antibody levels in the inoculated piglets. Of note, all SCN17-infected piglets survived throughout the study. The new virus was showed to be a moderately virulent isolate and have lower pathogenicity than HP-PRRSV strain, SCwhn09CD. Our results provide evidence for the continuing evolution of PRRSV field strain by genetic recombination and mutation leading to outbreaks in the vaccinated pig populations in China.
Collapse
Affiliation(s)
- Long Zhou
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu 610064, Sichuan, China.
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Jifeng Yu
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Bo Xie
- Chengdu Chia Tai Agro-industry & Food, Animal healthy disease service, Chengdu 610081, Sichuan, China.
| | - Changying Chen
- Chengdu Chia Tai Agro-industry & Food, Animal healthy disease service, Chengdu 610081, Sichuan, China.
| | - Xingyu Li
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Jing Xie
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Yonggang Ye
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Lu Xiao
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Jinling Zhang
- Sichuan Animal Science Academy, Sichuan Provincial Key laboratory of Animal Breeding and Genetics, Chengdu 610066, Sichuan, China.
| | - Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu 610064, Sichuan, China.
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu 610064, Sichuan, China.
| |
Collapse
|