1
|
Ten Nearly Complete Genome Sequences of Human Orthorubulavirus 4 Isolated from Pediatric Inpatients in Fukushima, Japan. Microbiol Resour Announc 2022; 11:e0041122. [PMID: 35678587 PMCID: PMC9302191 DOI: 10.1128/mra.00411-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report 10 nearly complete genomic sequences of human orthorubulavirus 4, also called human parainfluenza virus 4 (HPIV4), isolated from pediatric inpatients with respiratory infections in Fukushima, Japan, by using an air-liquid interface culture of human bronchial and tracheal epithelial cells.
Collapse
|
2
|
Bulavaitė A, Lasickienė R, Tamošiūnas PL, Simanavičius M, Sasnauskas K, Žvirblienė A. Synthesis of human parainfluenza virus 4 nucleocapsid-like particles in yeast and their use for detection of virus-specific antibodies in human serum. Appl Microbiol Biotechnol 2017; 101:2991-3004. [PMID: 28102432 DOI: 10.1007/s00253-017-8104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Abstract
The aim of this study was to produce human parainfluenza virus type 4 (HPIV4) nucleocapsid (N) protein in yeast Saccharomyces cerevisiae expression system, to explore its structural and antigenic properties and to evaluate its applicability in serology. The use of an optimized gene encoding HPIV4 N protein amino acid (aa) sequence GenBank AGU90031.1 allowed high yield of recombinant N protein forming nucleocapsid-like particles (NLPs) in yeast. A substitution L332D disrupted self-assembly of NLPs, confirming the role of this position in the N proteins of Paramyxovirinae. Three monoclonal antibodies (MAbs) were generated against the NLP-forming HPIV4 N protein. They recognised HPIV4-infected cells, demonstrating the antigenic similarity between the recombinant and virus-derived N proteins. HPIV4 N protein was used as a coating antigen in an indirect IgG ELISA with serum specimens of 154 patients with respiratory tract infection. The same serum specimens were tested with previously generated N protein of a closely related HPIV2, another representative of genus Rubulavirus. Competitive ELISA was developed using related yeast-produced viral antigens to deplete the cross-reactive serum antibodies. In the ELISA either without or with competition using heterologous HPIV (2 or 4) N or mumps virus N proteins, the seroprevalence of HPIV4 N-specific IgG was, respectively, 46.8, 39.6 and 40.3% and the seroprevalence of HPIV2 N-specific IgG-47.4, 39.0 and 37.7%. In conclusion, yeast-produced HPIV4 N protein shares structural and antigenic properties of the native virus nucleocapsids. Yeast-produced HPIV4 and HPIV2 NLPs are prospective tools in serology.
Collapse
Affiliation(s)
- Aistė Bulavaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257, Vilnius, Lithuania.
| | - Rita Lasickienė
- Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257, Vilnius, Lithuania
| | | | - Martynas Simanavičius
- Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257, Vilnius, Lithuania
| | - Kęstutis Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
3
|
Alquezar-Planas DE, Mourier T, Bruhn CAW, Hansen AJ, Vitcetz SN, Mørk S, Gorodkin J, Nielsen HA, Guo Y, Sethuraman A, Paxinos EE, Shan T, Delwart EL, Nielsen LP. Discovery of a divergent HPIV4 from respiratory secretions using second and third generation metagenomic sequencing. Sci Rep 2013; 3:2468. [PMID: 24002378 PMCID: PMC3760282 DOI: 10.1038/srep02468] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/26/2013] [Indexed: 11/13/2022] Open
Abstract
Molecular detection of viruses has been aided by high-throughput sequencing, permitting the genomic characterization of emerging strains. In this study, we comprehensively screened 500 respiratory secretions from children with upper and/or lower respiratory tract infections for viral pathogens. The viruses detected are described, including a divergent human parainfluenza virus type 4 from GS FLX pyrosequencing of 92 specimens. Complete full-genome characterization of the virus followed, using Single Molecule, Real-Time (SMRT) sequencing. Subsequent "primer walking" combined with Sanger sequencing validated the RS platform's utility in viral sequencing from complex clinical samples. Comparative genomics reveals the divergent strain clusters with the only completely sequenced HPIV4a subtype. However, it also exhibits various structural features present in one of the HPIV4b reference strains, opening questions regarding their lifecycle and evolutionary relationships among these viruses. Clinical data from patients infected with the strain, as well as viral prevalence estimates using real-time PCR, is also described.
Collapse
Affiliation(s)
- David E. Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Department of Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Christian A. W. Bruhn
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Anders J. Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Sarah Nathalie Vitcetz
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Søren Mørk
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | - Yan Guo
- Pacific Biosciences, Menlo Park, California, USA
| | | | | | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS)
- Blood Systems Research Institute, San Francisco, California
| | - Eric L. Delwart
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Lars P. Nielsen
- Department of Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Denmark
- Aalborg University, Department of Health Sciences, Aalborg, Denmark
| |
Collapse
|
4
|
Lednicky JA, Waltzek TB, Halpern MD, Hamilton SB. Comparative Analysis of the Full-Length Genome Sequence of a Clinical Isolate of Human Parainfluenza Virus 4B. SCIENTIFICA 2012; 2012:871201. [PMID: 24278751 PMCID: PMC3820592 DOI: 10.6064/2012/871201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/02/2012] [Indexed: 06/02/2023]
Abstract
We are engaged in airborne transmission and epidemiology studies of respiratory pathogens, with particular interest in human parainfluenza virus type 4 (hPIV-4) and other lesser studied viruses. In this paper, hPIV-4 was detected in primary rhesus monkey kidney (PRMK) cells that had been inoculated with nasopharyngeal swab material obtained from a child with a mild upper respiratory tract illness. Attempts to isolate the virus in pure culture were hampered by the presence of a fast-growing simian spumavirus that was a contaminant of the PRMK cells. Total RNA was extracted from the PRMK cell culture, and PCR followed by sequencing of a subgenomic section of the fusion protein gene suggested the hPIV-4 was subtype 4B. At the time of this work, two complete but dissimilar hPIV-4B genomes had been deposited by others in GenBank. To gain better insights on hPIV-4B, and to test methods that we are developing for viral forensics, the entire genomic sequence of our virus was determined from archived RNA. The hPIV-4B genomic sequence that we determined conforms to the paramyxovirus "rule of six." Here, we compare and contrast the genetic features of the three completely sequenced hPIV-4B genomes currently present in GenBank.
Collapse
Affiliation(s)
- John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, P.O. Box 100188, Gainesville, FL 32610-0188, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Thomas B. Waltzek
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, P.O. Box 100188, Gainesville, FL 32610-0188, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Micah D. Halpern
- GenSol Diagnostics, 4945 Apollo Avenue, St. Cloud, FL 34773, USA
| | - Sara B. Hamilton
- Medical Countermeasures Division, MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110, USA
| |
Collapse
|
5
|
Schomacker H, Schaap-Nutt A, Collins PL, Schmidt AC. Pathogenesis of acute respiratory illness caused by human parainfluenza viruses. Curr Opin Virol 2012; 2:294-9. [PMID: 22709516 DOI: 10.1016/j.coviro.2012.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 02/03/2012] [Indexed: 12/15/2022]
Abstract
Human parainfluenza viruses (HPIVs) are a common cause of acute respiratory illness throughout life. Infants, children, and the immunocompromised are the most likely to develop severe disease. HPIV1 and HPIV2 are best known to cause croup while HPIV3 is a common cause of bronchiolitis and pneumonia. HPIVs replicate productively in respiratory epithelial cells and do not spread systemically unless the host is severely immunocompromised. Molecular studies have delineated how HPIVs evade and block cellular innate immune responses to permit efficient replication, local spread, and host-to-host transmission. Studies using ex vivo human airway epithelium have focused on virus tropism, cellular pathology and the epithelial inflammatory response, elucidating how events early in infection shape the adaptive immune response and disease outcome.
Collapse
Affiliation(s)
- Henrick Schomacker
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | |
Collapse
|
6
|
Wang CYT, Arden KE, Greer R, Sloots TP, Mackay IM. A novel duplex real-time PCR for HPIV-4 detects co-circulation of both viral subtypes among ill children during 2008. J Clin Virol 2012; 54:83-5. [PMID: 22361219 DOI: 10.1016/j.jcv.2012.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/23/2012] [Indexed: 11/16/2022]
Abstract
The two subtypes of the human parainfluenzavirus type 4 (HPIV-4) are rarely sought in testing for acute respiratory illness (ARI) and this may be confounding our understanding of its role. This study presents a novel duplex real-time RT-PCR assay targeting the P gene that can detect and differentiate the two subtypes in a single reaction. Subtype-specific synthetic RNA positive controls were prepared and used to determine an analytical sensitivity of 10 copies per reaction with an 8log(10) dynamic range. The assays were validated using 1140 clinical specimens mostly nasopharyngeal aspirates collected from children during 2008. These included specimens previously determined to be positive for all commonly considered respiratory viruses. The novel assay did not cross-reaction with any other virus. Fourteen HPIV-4 positives, ten detected in the absence of any co-detections (four with rhinovirus), were identified in 2008 and their subtype confirmed by conventional RT-PCR and sequencing of P gene fragments. Most detections were in children two years of age or younger. Our assay proved suitably sensitive and specific for inclusion in future studies seeking to better understand the role HPIV-4 and other respiratory viruses in children with ARI.
Collapse
Affiliation(s)
- C Y T Wang
- Queensland paediatric infectious diseases Laboratory, Queensland Children's Medical Research Institute, Sir Albert Sakzewski Virus Research Centre, Children's Health Services District, University of Queensland, Australia
| | | | | | | | | |
Collapse
|
7
|
Dochow M, Krumm SA, Crowe JE, Moore ML, Plemper RK. Independent structural domains in paramyxovirus polymerase protein. J Biol Chem 2012; 287:6878-91. [PMID: 22215662 DOI: 10.1074/jbc.m111.325258] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases.
Collapse
Affiliation(s)
- Melanie Dochow
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
8
|
Komada H, Kawano M, Uefuji A, Ito M, Tsurudome M, Hatakeyama E, Nakanishi M, Sakue S, Joh C, Suzumura E, Tamaki T, Tomioka T, Nishio M, Tsumura H, Uematsu J, Yamamoto H, O'Brien M, Bando H, Ito Y. Completion of the full-length genome sequence of human parainfluenza virus types 4A and 4B: sequence analysis of the large protein genes and gene start, intergenic and end sequences. Arch Virol 2010; 156:161-6. [PMID: 20963613 DOI: 10.1007/s00705-010-0834-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
We have already reported the nucleotide sequences of the NP, P/V, M, F and HN genes of human parainfluenza virus type 4A (hPIV-4A) and type 4B (hPIV-4B). Here, we have determined the sequences of the L protein genes as well as the gene start, intergenic and end sequences, thereby completing the full-length genome sequence of hPIV-4A and 4B. hPIV-4A and 4B have 17,052 and 17,304 nucleotides, respectively. The end sequence of hPIV-4, especially 4B, was extraordinarily long. In a comparison with members of the genus Rubulavirus, the hPIV-4 L proteins were closely related to those of mumps virus (MUV) and hPIV-2, less closely related to those of Menangle virus and Tioman virus, and more distantly related to those of Mapuera virus and porcine rubulavirus.
Collapse
Affiliation(s)
- Hiroshi Komada
- Department of Microbiology, Suzuka University of Medical Science Suzuka, Mie, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|