1
|
Wang Q, Zhang R, Wang Y, Wang Y, Liang L, Ma H, Wang H, Si L, Wu X. A Subunit Vaccine Harboring the Fusion Capsid Proteins of Porcine Circovirus Types 2, 3, and 4 Induces Protective Immune Responses in a Mouse Model. Viruses 2024; 16:1964. [PMID: 39772270 PMCID: PMC11728783 DOI: 10.3390/v16121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs. In this study, we developed a PCV subunit vaccine candidate (Cap 2-3-4) by predicting, screening, and fusing antigenic epitopes of Cap proteins of PCV2, PCV3, and PCV4. Immunoprotection assays showed that the prokaryotic expression of Cap 2-3-4 could effectively induce high levels of PCV2, PCV3, and PCV4 Cap-specific antibodies and successfully neutralize both PCV2 and PCV3. Furthermore, Cap 2-3-4 demonstrated a potent ability to activate cellular immunity and thus prevent lung damage in mice. This study provides a new option for the development of broad vaccines against PCVs.
Collapse
Affiliation(s)
- Qikai Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ran Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Yue Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
de Moya-Ruiz C, Ferriol I, Gómez P. The Temporal Order of Mixed Viral Infections Matters: Common Events That Are Neglected in Plant Viral Diseases. Viruses 2024; 16:1954. [PMID: 39772260 PMCID: PMC11680185 DOI: 10.3390/v16121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence. This underscores the need for a more comprehensive understanding of how the order of virus arrival to the host can impact plant disease dynamics. From this perspective, we reviewed the current evidence regarding the impact of mixed infections within the framework of simultaneous and sequential infections in plants, considering the mode of viral transmission. We also examined how the temporal order of mixed infections could affect the dynamics of viral populations and present a case study of two aphid-transmitted viruses infecting melon plants, suggesting that the order of virus arrival significantly affects viral load and disease outcomes. Finally, we anticipate future research that reconciles molecular epidemiology and evolutionary ecology, underlining the importance of biotic interactions in shaping viral epidemiology and plant disease dynamics in agroecosystems.
Collapse
Affiliation(s)
- Celia de Moya-Ruiz
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| | | | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| |
Collapse
|
3
|
Zhao Y, Cui X, Sang H, Wen S, Han L, Yang P, Xiao Y, Hou Y. The Prevalence and Genetic Characteristics of Porcine Circovirus Type 2 in Shandong Province, China, 2018-2020. Curr Issues Mol Biol 2024; 46:13542-13553. [PMID: 39727937 DOI: 10.3390/cimb46120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important swine pathogen that has caused considerable economic losses in the global swine industry. During our surveillance of pigs in Shandong, China, from 2018 to 2020, we found that the PCV2 infection rate was 7.89% (86/1090). In addition, we found frequent mixed infections of PCV2 with porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), and porcine herpesvirus (PRV). Thirteen positive clinical samples were selected to amplify the complete genome of PCV2, and were sequenced. Among the 13, we detected two genotypes: PCV2b (1/13) and PCV2d (12/13). This suggests that PCV2d is the dominant genotype circulating in Shandong Province. Additionally, we found three positively selected sites in the ORF2 region, located on the previously reported antigenic epitopes. This investigation will contribute to understanding of the molecular epidemiology and genetic diversity of PCV2 strains in China.
Collapse
Affiliation(s)
- Yuzhong Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Haotian Sang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Shaodong Wen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Lebin Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Pingping Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Yanmeng Hou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Yuan Z, Sun Y, Niu X, Yan Q, Zeng W, Du P, Xie K, Fang Y, Wang L, Ding H, Yi L, Zhao M, Fan S, Zhao D, Chen J. Epidemiologic Investigation and Genetic Variation Analysis of PRRSV, PCV2, and PCV3 in Guangdong Province, China from 2020 to 2022. Viruses 2024; 16:1687. [PMID: 39599802 PMCID: PMC11598979 DOI: 10.3390/v16111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Recently, the emergence of HP-PRRSV (Highly Pathogenic porcine reproductive and respiratory syndrome virus) and the exacerbation of mixed infections of PRRSV and PCV have resulted in significant economic losses for the Chinese pig industry. This study collected a total of 226 samples suspected of infection with the aforementioned viruses from diverse pig farms in seven urban districts of central and northern Guangdong Province between 2020 and 2022. The positive rates of PRRSV, PCV2, and PCV3 in the samples were 33.2%, 37.6%, and 7.5%, respectively, and there were various mixed-infection scenarios present in the samples. This study successfully isolated multiple strains of PRRSV2 and PCV2 from their positive samples, and obtained the gene sequences of six PCV3 (ORF1 + ORF2) from samples. The associated sequences obtained were subjected to bioinformatic analysis and revealed the following:Predominantly prevalent strains of PRRSV in Guangdong Province include HP-PRRSV and NADC30-like variants, whereas PCV2 is primarily represented by the 2b and 2d subtypes. Specifically, the amino acid variation patterns exhibited by the PRRSV GP5 and NSP2 proteins of the strains sg_2108, qy_2008, and fs_2108 under environmental selective pressure are remarkably similar to the characteristics of Highly Pathogenic PRRSV; thus, it is inferred that they may possess higher virulence. The detected PCV3 strains were predominantly concentrated within the PCV3a-IM branch. All PRRSV strains involved in this study are wild-type-PRRSV (wt-PRRSV), comprising three recombinant strains and seven highly virulent strains. Among these strains, the ORF1a gene exhibited the highest variability in their genomes. Environmental selective pressure may enhance the virulence and immune evasion capabilities of PRRSV and drive mutations in the Cap proteins of PCV2 and PCV3. Conversely, PCV2 and PCV3 strains demonstrated greater stability in genetic evolution. In conclusion, this study enhances the epidemiological data regarding PRRSV, PCV2, and PCV3 in Guangdong Province, China, and is significant for the surveillance, prevention, and active control of these three diseases.
Collapse
Affiliation(s)
- Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Pengfei Du
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Kaiyuan Xie
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Yunfu 527400, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| | - Dongfang Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Yunfu 527400, China
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, HuiNeng North Road, Yunfu 527400, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Z.Y.); (Y.S.)
| |
Collapse
|
5
|
Chen Y, Zhu J, Wang S, Li M, Sun X, Liu S, Wang Y, Li R, Zhang G. Modular Nano-Antigen Display Platform for Pigs Induces Potent Immune Responses. ACS NANO 2024; 18:29152-29177. [PMID: 39387806 DOI: 10.1021/acsnano.4c10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multivalent presentation of antigens using nanoparticles (NPs) as a platform is an effective strategy to enhance the immunogenicity of subunit vaccines and thus induce a high level of organismal immune response. Our previous results showed that pre-existing porcine circovirus type 2 (PCV2) antibodies could increase the antibody levels of nanoparticle vaccines carried in PCV2 VLPs. Here, we have established a generalized nanoantigen display platform, Cap-Cat virus-like particles (VLPs). By combining PCV2 VLPs with the modular linker element SpyTag003/SpyCatcher003 system, four porcine-derived viral protective antigens with different sizes and multimeric structures: the PRRSV B-cell epitope, the PEDV COE monomer, the CSFV E2 dimer, and the SIV HA trimer were efficiently demonstrated to elicit a strong immune response in mice. Crucially, the modification of antigens by the Cap-Cat VLPs platform enhanced the Th2 response and improved the Th1 response. The use of the platform demonstrates that HA antigen protects against lethal attacks by influenza viruses and reduces viral load in the lungs. We have demonstrated that the Cap-Cat VLPs platform demonstrates that antigens enhance the immune response by improving the processes of DC uptake, transport, lymph node (LN) localization, and immune cell activation. This "plug-and-display" assembly strategy facilitates the use of the Cap-Cat VLPs nanoantigen display platform for more applications and thus facilitates the development of more efficient, general-purpose porcine subunit vaccines.
Collapse
Affiliation(s)
- Yilan Chen
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiahong Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Siqiao Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Minghui Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Siyuan Liu
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruiqi Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Quan F, Geng Y, Wu Y, Jiang F, Li X, Yu C. Development and application of a quadruplex real-time PCR method for Torque teno sus virus 1, Porcine circovirus type 2, pseudorabies virus, and porcine parvovirus. Front Cell Infect Microbiol 2024; 14:1461448. [PMID: 39479279 PMCID: PMC11523562 DOI: 10.3389/fcimb.2024.1461448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In clinical diagnosis of porcine diseases, co-infection with multiple viruses often leads to similar clinical symptoms. Postweaning multisystemic wasting syndrome (PMWS) can be caused by infections with TTSuV or PCV2, while PCV2, PRV, and PPV can cause respiratory and reproductive disorders in pigs. The overlapping clinical and pathological features of these infections necessitate the development of a rapid and specific method for differentiating and detecting these four DNA viruses. Methods In this study, four pairs of primers and TaqMan probes were designed targeting the conserved sequence of TTSuV, the Rep gene of PCV2, the gE gene of PRV, and the VP2 gene of PPV. After optimizing reaction conditions, including annealing temperature, primer concentration, and probe concentration, a quadruplex real-time PCR method was developed. Results This method can specifically detect TTSuV1, PCV2, PRV, and PPV simultaneously, with no cross-reactivity with ASFV, CSFV, PRRSV, PEDV, PSV, and TGEV. The minimum detection limit for each virus was 10 copies/μl, and the inter-assay and intra-assay coefficients of variation ranged from 0.33% to 1.43%. Subsequently, 150 clinical samples were tested to evaluate the practical applicability of this method. The positive rates for TTSuV1, PCV2, PRV, and PPV were 8.6% (13/150), 10.67% (16/150), 14% (21/150), and 11.33% (17/150), respectively. Discussion The results indicate that the established quadruplex real-time PCR method can assist in the accurate and rapid diagnosis of TTSuV1, PCV2, PRV, and PPV in clinical settings, providing robust support for the prevention and control of these infections.
Collapse
Affiliation(s)
- Fushi Quan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yulu Geng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Faming Jiang
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Xuemei Li
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| |
Collapse
|
7
|
Xiao Q, Qu M, Xie J, Zhu C, Shan Y, Mao A, Qian W, Zhu J, Guo J, Lang D, Niu J, Wen L, He K. Frequency and Genetic Analysis of Porcine Circovirus Type 2, Which Circulated between 2014 and 2021 in Jiangsu, China. Animals (Basel) 2024; 14:2882. [PMID: 39409831 PMCID: PMC11482567 DOI: 10.3390/ani14192882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine circovirus-associated diseases, caused by porcine circovirus type 2 (PCV2), are widespread and result in significant economic losses to the global swine industry. PCV2 can currently be divided into nine genotypes (PCV2a to PCV2i), with the currently dominant one being the PCV2d genotype. In this study, 2675 samples from 804 pig farms in 13 cities in Jiangsu Province, China, were collected between 2014 and 2021 and subjected to polymerase chain reaction analysis to investigate the frequency and genetic diversity of PCV2. The results showed that 41.42% (1108/2675) of samples tested positive for PCV2. The researchers further analyzed the genetic characteristics of 251 PCV2 strains and found that they belonged to the following four genotypes: PCV2a, PCV2b, PCV2d, and PCV2i. The dominant genotype was PCV2d, with a frequency of 49.80% (125/251). The detection rate of PCV2b was significantly higher than those of PCV2a and PCV2i, at 35.46% (89/251), 7.57% (19/251), and 7.17% (18/251), respectively. The percentage of different genotypes of PCV2 varied irregularly over time. We have further revealed the fingerprint of PCV2i genomic nucleotides for the first time. In conclusion, this study illustrates the high frequency and evolutionary features of PCV2 in Jiangsu Province over the past few years.
Collapse
Affiliation(s)
- Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Meng Qu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jianping Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Cigen Zhu
- Jiangsu Animal Husbandry Station, Nanjing 210036, China;
| | - Yuping Shan
- Animal Husbandry and Veterinary Station of Lianyungang, Lianyungang 222000, China;
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Wenxian Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiaping Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiahui Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Dong Lang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
| | - Jiaqiang Niu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Linzhi 860000, China;
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.X.); (M.Q.); (J.X.); (A.M.); (W.Q.); (J.Z.); (J.G.); (D.L.)
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
8
|
Zhang H, Li X, Lv X, Han Y, Zheng J, Ren L. Soluble expression and immunogenicity analysis of capsid proteins of porcine circoviruses types 2, 3, and 4. Vet J 2024; 307:106199. [PMID: 39038778 DOI: 10.1016/j.tvjl.2024.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Porcine circoviruses (PCVs) contain four types: PCV1, PCV2, PCV3, and PCV4, all of which can infect pigs. Among them, PCV1 is non-pathogenic, and PCV2 can cause porcine circovirus diseases (PCVD) or porcine circovirus-associated diseases (PCVAD). Although the pathogenicity of PCV3 and PCV4 is still controversial, increasing evidence shows that PCV3 and PCV4 can cause PCV-related disease. However, mixed infection of PCV2, PCV3, and PCV4 with other pathogens often occurs in large-scale pig breeding, bringing severe economic losses to the global pig industry. In this study, the soluble recombinant proteins of PCV2, PCV3, and PCV4 Cap were expressed by the prokaryotic expression system and biotinylated to combine with the Streptavidin magnetic beads, followed by immunogenicity evaluation of the recombinant proteins. Furthermore, we also assessed the efficacy and immunogenicity of trivalent recombinant proteins conjugated with different adjuvants in mice. The results showed that the highly effective anti-PCV serum was successfully prepared, and the recombinant proteins conjugated with different adjuvants produced various degrees of humoral and cellular immunity in mice. Three recombinant proteins are effective immunogens, and the trivalent proteins coupled with the aluminum adjuvant or GM-CSF-CpG for two-dose immunization can stimulate prominent humoral and cellular immunity against PCVs in vivo. The soluble recombinant proteins are the most promising candidate for developing a trivalent vaccine against PCVs (PCV2, PCV3, and PCV4) infection simultaneously.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xue Li
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinru Lv
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yaqi Han
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China; College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
9
|
Yang K, Wang Z, Wang X, Bi M, Hu S, Li K, Pan X, Wang Y, Ma D, Mo X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol J 2024; 21:230. [PMID: 39334389 PMCID: PMC11428415 DOI: 10.1186/s12985-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.
Collapse
Affiliation(s)
- Kai Yang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Zunbao Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Xinyu Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mingfang Bi
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Suhua Hu
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Kaijie Li
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaomei Pan
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Yuan Wang
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Dan Ma
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaobing Mo
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Yamashita M, Iwamoto S, Ochiai M, Yamamoto A, Sudo K, Narushima R, Nagasaka T, Saito A, Oba M, Omatsu T, Mizutani T, Yamamoto K. Pathogenicity of genotype 2.1 classical swine fever virus isolated from Japan in 2019 in pigs. Microbiol Immunol 2024; 68:267-280. [PMID: 38946035 DOI: 10.1111/1348-0421.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 07/02/2024]
Abstract
Classical swine fever (CSF) re-emerged in Japan in 2018 for the first time in 26 years. The disease has been known to be caused by a moderately pathogenic virus, rather than the highly pathogenic virus that had occurred in the past. However, the underlying pathophysiology remains unknown. This study conducted an experimental challenge on specific pathogen-free (SPF) pigs in a naïve state for 2, 4, and 6 weeks and confirmed the disease state during each period by clinical observation, virus detection, and pathological necropsy. We revealed the pathological changes and distribution of pathogens and virus-specific antibodies at each period after virus challenge. These results were comprehensively analyzed and approximately 70% of the pigs recovered, especially at 4- and 6-week post-virus challenge. This study provides useful information for future countermeasures against CSF by clarifying the pathogenicity outcomes in unvaccinated pigs with moderately pathogenic genotype 2.1 virus.
Collapse
Affiliation(s)
- Maiko Yamashita
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), Tokyo, Japan
| | - Shoko Iwamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Mariko Ochiai
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Atsushi Yamamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Kasumi Sudo
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
- Livestock Industry Bureau, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Rie Narushima
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Takao Nagasaka
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Akito Saito
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
- Exotic Diseases Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), Tokyo, Japan
| | - Tsutomu Omatsu
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), Tokyo, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), Tokyo, Japan
| | - Kinya Yamamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
11
|
Dundon WG, Molini U, Franzo G. Six underreported viral diseases of domesticated and wild swine in Africa: Implications and perspectives. Vet Microbiol 2024; 294:110120. [PMID: 38749211 DOI: 10.1016/j.vetmic.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Pig production is increasing annually in Africa as it is recognized as a significant source of income, livelihood and food security, particularly in rural communities. Understanding the circulating swine pathogens is crucial for the success of this emerging industry. Although there is extensive data available on the African swine fever virus due to its devastating impact on pig production, knowledge about the presence of other viral swine pathogens on the continent is still extremely limited. This review discusses what is currently known about six swine pathogens in Africa: classical swine fever virus, porcine reproductive and respiratory syndrome virus, porcine circovirus-2, porcine circovirus-3, porcine parvovirus-1, and pseudorabies virus. Gaps in our knowledge are identified and topics of future focus discussed.
Collapse
Affiliation(s)
- William G Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Center, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, Vienna 1400, Austria.
| | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Neudamm Campus, Private Bag 13301, Windhoek, Namibia; Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag 18137, Windhoek, Namibia
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, viale dell'Università 16, 35020, Italy
| |
Collapse
|
12
|
Fujimuro M. The Interactions between Cells and Viruses. Int J Mol Sci 2024; 25:6886. [PMID: 38999995 PMCID: PMC11241451 DOI: 10.3390/ijms25136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many infectious diseases are caused by life-threatening DNA and RNA viruses and have been reported worldwide, including those caused by emerging and re-emerging viruses [...].
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
13
|
Shuai J, Chen K, Wang Z, Zeng R, Ma B, Zhang M, Song H, Zhang X. A multiplex digital PCR assay for detection and quantitation of porcine circovirus type 2 and type 3. Arch Virol 2024; 169:119. [PMID: 38753197 DOI: 10.1007/s00705-024-06044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.
Collapse
Affiliation(s)
- Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Kexin Chen
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Zhongcai Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Frant MP, Mazur-Panasiuk N, Gal-Cisoń A, Bocian Ł, Łyjak M, Szczotka-Bochniarz A. Porcine Circovirus Type 3 (PCV3) in Poland: Prevalence in Wild Boar Population in Connection with African Swine Fever (ASF). Viruses 2024; 16:754. [PMID: 38793635 PMCID: PMC11125846 DOI: 10.3390/v16050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.
Collapse
Affiliation(s)
- Maciej Piotr Frant
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Natalia Mazur-Panasiuk
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
| | - Anna Gal-Cisoń
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland;
| | - Magdalena Łyjak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Anna Szczotka-Bochniarz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland
| |
Collapse
|
15
|
Lin Y, Zhou L, Xiao C, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. Development and biological characterization of an infectious cDNA clone of NADC34-like PRRSV. Front Microbiol 2024; 15:1359970. [PMID: 38800747 PMCID: PMC11123230 DOI: 10.3389/fmicb.2024.1359970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes high abortion rates in gestating sows and stillbirths, as well as high piglet mortality, seriously jeopardizing the pig industry in China and worldwide. Methods In this study, an infectious clone containing the full-length genome of NADC34-like PRRSV was constructed for the first time using reverse genetic techniques. The gene was amplified segmentally onto a plasmid, transfected into BHK-21 cells, and the transfected supernatant was harvested and transfected into PAM cells, which showed classical cytopathic effects (CPE). Results The virus rJS-KS/2021 was successfully rescued which could be demonstrated by Western Blot and indirect immunofluorescence assays. Its growth curve was similar to the original strain. Replace the 5'UTR and 3'UTR of rJS-KS/2021 with 5'UTR and 3'UTR of HP-PRRSV (strain SH1) also failed to propagate on MARC-145. Discussion In this study, an infectious clone of NADC34-like was constructed by reverse genetics, replacing the UTR and changing the cellular tropism of the virus. These findings provide a solid foundation for studying the recombination of different PRRSVs and the adaption of PRRSVs on MARC-145 in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
Zhang C, He F, Li N, Du W, Wen J, Wu X, Shi J, Li C, Liu C, Xu S, Han H, Hrabchenko N, Han X, Li J. Optimized production of full-length PCV2d virus-like particles in Escherichia coli: A cost-effective and high-yield approach for potential vaccine antigen development. Microb Pathog 2024; 190:106630. [PMID: 38556102 DOI: 10.1016/j.micpath.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, β-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.
Collapse
Affiliation(s)
| | - Fang He
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Nianfeng Li
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Du
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianxin Wen
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Wu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianli Shi
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chen Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chang Liu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shaojian Xu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Hong Han
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Nataliia Hrabchenko
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xianjie Han
- Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jun Li
- Qingdao Agricultural University, Qingdao, 266109, China; Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
17
|
Zhang P, Ren Z, Gao X, Zhao M, Wang Y, Chen J, Wang G, Xiang H, Cai R, Luo S, Wang X. Development and application of a TaqMan-probe-based multiplex real-time PCR assay for simultaneous detection of porcine circovirus 2, 3, and 4 in Guangdong province of China. Front Vet Sci 2024; 11:1353439. [PMID: 38737459 PMCID: PMC11085253 DOI: 10.3389/fvets.2024.1353439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Porcine circoviruses disease (PCVD), caused by porcine circovirus (PCVs), is an important swine disease characterized by porcine dermatitis, nephrotic syndrome and reproductive disorders in sows. However, diseases caused by PCV2, PCV3, or PCV4 are difficult to distinguish, so a simple, rapid, accurate and high-throughput diagnostic and identification method is urgently needed to differentiate these three types. In this study, specific primers and probes were designed based on the conserved region sequences of the Rep gene of PCV2, and the Cap gene of PCV3 and PCV4. A multiplex qPCR assay was developed and optimized that the limit of detection concentration could reach as low as 3.8 copies/μL, with all correlation coefficients (R2) exceeding 0.999. Furthermore, the method showed no cross-reaction with other crucial porcine viral pathogens, and both intra-repeatability and inter-reproducibility coefficients of variation were below 2%. The assay was applied to the detection of 738 pig samples collected from 2020 to 2021 in Guangdong Province, China. This revealed positive infection rates of 65.18% for PCV2, 29.27% for PCV3, and 0% for PCV4, with a PCV2/PCV3 co-infection rate of 23.17%. Subsequently, complete genome sequences of 17 PCV2 and 4 PCV3 strains were obtained from the above positive samples and pre-preserved positive circovirus samples. Nucleotide sequence analysis revealed that the 17 PCV2 strains shared 96.7-100% complete nucleotide identity, with 6 strains being PCV2b and 11 strains being PCV2d; the 4 PCV3 strains shared 98.9-99.4% complete nucleotide identity, with 2 strains being PCV3a-1 and 2 strains being PCV3b. This research provides a reliable tool for rapid PCVs identification and detection. Molecular epidemiological investigation of PCVs in pigs in Guangdong Province will help us to understand PCV2 and PCV3 epidemiological characteristics and evolutionary trends.
Collapse
Affiliation(s)
- Pian Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaowen Ren
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaopeng Gao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mengpo Zhao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyun Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hua Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rujian Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shengjun Luo
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Wang Y, Xu F, Yuan C, Zhang Y, Ren J, Yue H, Ma T, Song Q. Comparison of immune effects of porcine circovirus type 2d (PCV2d) capsid protein expressed by Escherichia coli and baculovirus-insect cells. Vaccine 2024; 42:2848-2857. [PMID: 38514351 DOI: 10.1016/j.vaccine.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen harmful to global pig production, which causes immunosuppression and serious economic losses. PCV2 capsid (Cap) protein expressed by E. coli or baculovirus-insect cells are often used in preparation of PCV2 subunit vaccines, but the latter is expensive to produce. It is therefore crucial to comparison of the immune effects of Cap protein expressed by the above two expression systems for reducing the production cost and guaranteeing PCV2 vaccine quality. In this study, the PCV2d-Cap protein lacking nuclear localization signal (NLS), designated as E. coli-Cap and Bac-Cap, was expressed by E. coli and baculovirus-Spodoptera frugiperda Sf9 (Bac-Sf9) cells, respectively. The expressed Cap proteins could self-assemble into virus-like particles (VLPs), but the Bac-Cap-assembled VLPs were more regular. The two system-expressed Cap proteins induced similar specific IgG responses in mice, but the neutralizing antibody levels of Bac-Cap-immunized mice was higher than those of E. coli-Cap. After PCV2 challenge, IL-10 in Bac-Cap immunized mice decreased significantly than that in E. coli-Cap. The lesions and PCV2 antigen positive cells in tissues of mice immunized with E. coli-Cap and Bac-Cap were significantly reduced, and Bac-Cap appeared mild lesions and fewer PCV2 antigen-positive cells compared with E. coli-Cap immunized mice. The study indicated that Cap proteins expressed by E. coli and Bac-Sf9 cells could induce specific protective immunity, but the latter induced more effective immunity, which provides valuable information for the research and development of PCV2 vaccine.
Collapse
Affiliation(s)
- Yawen Wang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Fan Xu
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Chen Yuan
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Yanan Zhang
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Jing Ren
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Huaining Yue
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Tiantian Ma
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Qinye Song
- College of Veterinary Medicine & Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
19
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
20
|
Yang Y, Xu Z, Tao Q, Xu L, Gu S, Huang Y, Liu Z, Zhang Y, Wen J, Lai S, Zhu L. Construction of recombinant pseudorabies virus expressing PCV2 Cap, PCV3 Cap, and IL-4: investigation of their biological characteristics and immunogenicity. Front Immunol 2024; 15:1339387. [PMID: 38571947 PMCID: PMC10987767 DOI: 10.3389/fimmu.2024.1339387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China. Methods In this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice. Results rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators. Conclusion rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Rigueira LL, Perecmanis S. Concerns about the use of antimicrobials in swine herds and alternative trends. Transl Anim Sci 2024; 8:txae039. [PMID: 38685989 PMCID: PMC11056889 DOI: 10.1093/tas/txae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Pig productivity in Brazil has advanced a lot in recent decades. Specialized breeds are more vulnerable to pathogens, which has boosted the use of antimicrobials by farmers. The selective pressure generated favors the emergence of resistant bacteria, which compromises the effectiveness of this treatment and limits therapeutic options. In addition to increasing costs and mortality rates in the production system, public awareness of this issue has increased. The authorities have imposed restrictive measures to control the use of antimicrobials and have banned their use as growth promoters. This literature review highlights biosecurity and animal welfare to prevent pig diseases. Hence, we describe alternatives to the use of antimicrobials in pig production for the selection of effective non-antibiotic feed additives that help maintain good health and help the pig resist disease when infection occurs.
Collapse
Affiliation(s)
- Luciana L Rigueira
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
- Secretary of Agriculture of Federal District, 70770-914, Brasília, Brazil
| | - Simone Perecmanis
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
| |
Collapse
|
22
|
Tarján ZL, Szekeres S, Vidovszky MZ, Egyed L. Detection of circovirus in free-ranging brown rats (Rattus norvegicus). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105548. [PMID: 38176604 DOI: 10.1016/j.meegid.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Accidentally found, two poisoned brown rats from Hungary were surveyed for presence of circoviral DNA, using specific nested primers, designed against the rep gene of the virus. Both specimens were positive. The whole genomes were amplified using inverse PCR based on the Rep sequence parts and sequenced by the primer walking method. Genomic analyses revealed that these novel rat viruses, together with tawny owl-associated circovirus reported by Italian researchers in 2022, are sequence variations of the same virus from genus Circovirus. In phylogenetic reconstructions, these circovirus strains detected from brown rats clustered closest to circoviruses derived from faeces samples of various predatory mammals. Molecular data as well as the phylogenetic analyses of the complete derived replication-associated protein and the capsid protein, as well as the prey preference of the host species of the recently described tawny owl-associated virus suggest that brown rat could be the evolutionary adapted host of the viruses described in this paper (brown rat circovirus types 1 and 2) and the previously reported tawny owl-associated virus. Possible pathogenic and zoonotic role of these viruses need further studies.
Collapse
Affiliation(s)
- Z L Tarján
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - S Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - M Z Vidovszky
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - L Egyed
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary.
| |
Collapse
|
23
|
Rajkhowa S, Sonowal J, Pegu SR, Sanger GS, Deb R, Das PJ, Doley J, Paul S, Gupta VK. Natural co-infection of pigs with African swine fever virus and porcine reproductive and respiratory syndrome virus in India. Braz J Microbiol 2024; 55:1017-1022. [PMID: 38041718 PMCID: PMC10920511 DOI: 10.1007/s42770-023-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and African swine fever (ASF) are economically important diseases of pigs throughout the world. During an outbreak, all age groups of animals except piglets < 1 month of age were affected with symptoms of high fever, cutaneous hemorrhages, vomition with blood, diarrhea, poor appetite, ataxia, and death. The outbreak was confirmed by the detection of the N gene of the porcine reproductive and respiratory syndrome virus (PRRSV) and the VP72 gene of the African swine fever virus (ASFV) by PCR in representative blood samples from affected pigs followed by Sanger sequencing. Mixed infection was also confirmed by simultaneous detection of both the viruses using multiplex PCR. Phylogenetic analysis of both the viruses revealed that the outbreak was related to ASFV and PRRSV strains from China which were also closely related to the PRRSV and ASFV strains from the recent outbreak from India. The study confirmed the involvement of genotype II of ASFV and genotype 2 of PRRSV in the present outbreak. Interestingly, PRRSV associated with the present outbreak was characterized as a highly pathogenic PRRSV. Therefore, the present study indicates the possibility of future waves or further outbreaks of these diseases (PRRS and ASF) in this region. This is the first report of ASFV and PRRSV co-infection in pigs from India.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | | | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Juwar Doley
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Souvik Paul
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| |
Collapse
|
24
|
Basso CR, Cruz TF, Vieira LB, Pedrosa VDA, Possebon FS, Araujo Junior JP. Development of a Gold Nanoparticle-Based ELISA for Detection of PCV2. Pathogens 2024; 13:108. [PMID: 38392846 PMCID: PMC10893201 DOI: 10.3390/pathogens13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
In this new methodology, plasmonic ELISA (pELISA) was used to detect Circovirus porcine2 (PCV2) in serum samples without the need for plate reading equipment. This process occurs by adapting the conventional ELISA test with gold nanoparticles (AuNPs) to promote a color change on the plate and quickly identify this difference with the naked eye, generating a dark purple-gray hue when the samples are positive and red when the samples are negative. The technique demonstrated high efficiency in detecting samples with a viral load ≥ 5 log10 copies/mL. Plasmonic ELISA offers user-friendly, cost-effective, and reliable characteristics, making it a valuable tool for PCV2 diagnosis and potentially adaptable for other pathogen detection applications.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Larissa Baldo Vieira
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Valber de Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Fábio Sossai Possebon
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - João Pessoa Araujo Junior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
25
|
Sagrera M, Garza-Moreno L, Sibila M, Oliver-Ferrando S, Cárceles S, Casanovas C, Prieto P, García-Flores A, Espigares D, Segalés J. Frequency of PCV-2 viremia in nursery piglets from a Spanish swine integration system in 2020 and 2022 considering PRRSV infection status. Porcine Health Manag 2024; 10:4. [PMID: 38229182 DOI: 10.1186/s40813-024-00354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Porcine circovirus 2 (PCV-2) poses a significant economic threat for the swine industry, causing a range of diseases collectively referred to as porcine circovirus diseases (PCVDs). Despite PCV-2 vaccine effectiveness, the need for monitoring infectious pressure remains. PCV-2 coinfection with other pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) can exacerbate disease severity and lead to PCV-2-systemic disease cases. Monitoring both PRRSV and PCV-2 in co-infected farms is crucial for an effective management and vaccination programs. The present cross-sectional study aimed to determine PCV-2 antibody levels in piglets at weaning and PCV-2 and PRRSV viremia in pooled serum samples at weaning (vaccination age) and at 6 and 9 weeks of age from a Spanish swine integration system in 2020 (48 farms) and in 2022 (28 out of the 48 analysed previously). RESULTS The frequency of PCV-2 detection in pools of piglet sera was 2.1% (2020) and 7.1% (2022) at vaccination age but increased at the end of the nursery period (10.4% in 2020 and 39.3% in 2022) in both years. Co-infections between PCV-2 and PRRSV were detected in a significant proportion of PRRSV positive farms (15% in 2020, and 60% in 2022). PCV-2 antibody levels (ELISA S/P ratios) at weaning were lower in PCV-2 qPCR positive farms at different sampling time-points (0.361 in 2020 and 0.378 in 2022) compared to PCV-2 qPCR negative ones (0.587 in 2020 and 0.541 in 2022). The 28 farms tested both years were classified in four different epidemiological scenarios depending on their PCV-2 virological status. Those PCV-2 qPCR negative farms in 2020 that turned to be positive in 2022 had a statistically significant increase of PRRSV RT-qPCR detection and a PCV-2 antibody levels reduction, facts that were not observed in the rest of the scenarios. CONCLUSION This epidemiological study in farms from the same integration system determined the occurrence, in 2020 and in 2022, of PCV-2 and PRRSV infections in piglets during the nursery period by using pooled serum samples.
Collapse
Affiliation(s)
- Mònica Sagrera
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | | | - Marina Sibila
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | | | - Sonia Cárceles
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Carlos Casanovas
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Patricia Prieto
- Inga Food S.A., Ronda de Poniente, 9, 28760, Tres Cantos, Madrid, Spain
| | | | - David Espigares
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
26
|
Xu RQ, Wang LQ, Zheng HH, Tian RB, Zheng LL, Ma SJ, Chen HY. Characterization of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the Cap protein of porcine circovirus type 2d. Comp Immunol Microbiol Infect Dis 2023; 101:102054. [PMID: 37651789 DOI: 10.1016/j.cimid.2023.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Porcine circovirus type 2 (PCV2) plays a key role in the etiology of PCV2-associated disease (PCVAD), and its predominant strain is PCV2d which is not completely controlled by most commercially available vaccines against PCV2a strains. Pseudorabies (PR) caused by pseudorabies virus (PRV) variants re-emerged in Bartha-K61 vaccine-immunized swine herds in late 2011, which brought considerable losses to the global pig husbandry. Therefore, it is significantly important to develop a safe and effective vaccine against both PCV2d and PRV infection. In the present study, the PCV2d ORF2 gene was amplified by PCR, and cloned into the BamHI site of PRV transfer plasmid pG vector to obtain the recombinant transfer plasmid pG-PCV2dCap-EGFP. Subsequently, it was transfected into ST cells infected with the three gene deleted PRV variant strain NY-gE-/gI-/TK- to generate a recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+/EGFP+, and then the EGFP gene was knocked out to harvest the rPRV NY-gE-/gI-/TK-/PCV2dCap+ using gene-editing technology termed CRISPR/Cas9 system. The recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ had similar genetic stability and proliferation characteristics to the parental PRV as indicated by PCR and one-step growth curve test, and the expression of Cap was validated by Western blot. In animal experiment, higher PCV2-specific ELISA antibodies and detectable PCV2-specific neutralizing antibodies could be elicited in mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ compared to commercial PCV2 inactivated vaccine. Moreover, the recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ significantly reduced the viral loads in the hearts, livers, spleens, lungs, and kidneys in mice following a virulent PCV2d challenge. Mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal PRV challenge. Together, the rPRV NY-gE-/gI-/TK-/PCV2dCap+ recombinant strain has strong immunogenicity.
Collapse
Affiliation(s)
- Rui-Qin Xu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Lin-Qing Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China; Department of Life Science, Zhengzhou Normal University, Zhengzhou 450044, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Run-Bo Tian
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
27
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
28
|
Ju L, Jayaramaiah U, Lee MA, Jeong YJ, You SH, Lee HS, Hyun BH, Lee N, Kang SJ. A Field Efficacy Trial of Recombinant Porcine Circovirus Type 2d Vaccine in Three Herds. Vaccines (Basel) 2023; 11:1497. [PMID: 37766173 PMCID: PMC10538009 DOI: 10.3390/vaccines11091497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to evaluate the efficacy of a virus-like particle (VLP) vaccine containing the open reading frame 2 of porcine circovirus type 2d (PCV2d) in a farm environment where natural infections associated with porcine circovirus-associated disease are endemic. The vaccine trial was conducted on three farms (H, M, and Y) with a history of infections including porcine reproductive and respiratory syndrome virus (PRRSV), PCV, Mycoplasma, and E. coli. Farm H, as well as farms M and Y, experienced natural PCV2 infection between 4 and 8 weeks post-vaccination (wpv), and 8 and 12 wpv, respectively. Viremia levels of all farms were significantly (p < 0.05) lower in vaccinated piglets than the control group after natural infection. In all farms, serum immunoglobulin G levels peaked at 8 wpv in the vaccinated groups, surpassing those in the control groups. Furthermore, neutralizing antibody titers were significantly (p < 0.05) higher in the vaccinated groups than the control groups in farms H and Y (0-8 wpv). However, there were no significant differences between the vaccinated and control group in neutralizing antibody titers of farm M (0-20 wpv). In terms of body weight, vaccinated piglets from all three farms showed significantly increased average weights at 12 wpv compared to the control groups. In conclusion, our study revealed noteworthy differences in viremia and body weight gain between vaccinated and control animals on three farms. As a result, this field trial of PCV2d VLP vaccine was successful in protecting piglets from natural PCV2 infection.
Collapse
Affiliation(s)
- Lanjeong Ju
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Usharani Jayaramaiah
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Min-A Lee
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Young-Ju Jeong
- Technology Institute, KBNP, Anyang-si 14059, Gyeonggi-do, Republic of Korea
| | - Su-Hwa You
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Hyang-Sim Lee
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Bang-Hun Hyun
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Nakhyung Lee
- Technology Institute, KBNP, Anyang-si 14059, Gyeonggi-do, Republic of Korea
| | - Seok-Jin Kang
- Division of Viral Diseases, Animal and Plant Quarantine Agency, 177, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
29
|
D’Annunzio G, Ostanello F, Muscatello LV, Orioles M, Jacumin N, Tommasini N, Leotti G, Luppi A, Mandrioli L, Sarli G. Porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus alone or associated are frequent intralesional detected viruses in porcine respiratory disease complex cases in Northern Italy. Front Vet Sci 2023; 10:1234779. [PMID: 37720469 PMCID: PMC10500834 DOI: 10.3389/fvets.2023.1234779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Methods This study aimed to examine the pathological impact of Porcine Circovirus type 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) through histological and immunohistochemical analysis of 79 cases of Porcine Respiratory Disease Complex (PRDC) collected from 22 farms in Northern Italy. Lung tissue and several lymphoid organ samples were deployed to associate PCV2-positive stain with Circovirus-associated Diseases (PCVD). Results The most common lung lesion observed was interstitial pneumonia, alone or combined with bronchopneumonia. By immunohistochemistry, 44 lungs (55.7%) tested positive for PCV2, 34 (43.0%) for PRRSV, 16 (20.3%) for both viruses and in 17 cases (21.5%) neither virus was detected. Twenty-eight out of 44 (63.6%) PCV2-positive cases had lymphoid depletion or granulomatous inflammation in at least one of the lymphoid tissues examined; thus, they were classified as PCV2 Systemic Diseases (PCV2-SD). In the remaining 16 out of 44 cases (36.4%), PCV2-positive lung lesions were associated with hyperplastic or normal lymphoid tissues, which showed PCV2-positive centrofollicular dendritic cells in at least one of the lymphoid tissues examined. Therefore, these cases were classified as PRDC/PCV2-positive. In the PCV2-positive animals, 42.9% of the PCV2-SD cases (12/28) showed immunohistochemistry (IHC) positivity for PRRSV in the lung tissue, while 25.0% of PRDC/PCV2-positive cases (4/16) showed double positivity for PCV2 and PRRSV. Discussion In light of the caseload presented in this study, characterized by the high proportion of PCV2-SD cases alongside the overall respiratory symptomatology, it is imperative to emphasize the crucial role of a comprehensive sampling protocol. This is critical to avoid underestimating the harm caused by PCV2 in farms, particularly with respect to the systemic form of the disease. PCV2 and PRRSV remain the primary infections associated with PRDC in Italy that can significantly impact farm health and co-infections in the field can worsen the pathology, thus the selection of appropriate preventive measures is critical.
Collapse
Affiliation(s)
- Giulia D’Annunzio
- Isituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia – Romagna “Bruno Ubertini”, Brescia, Italy
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | - Fabio Ostanello
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | | | - Massimo Orioles
- Dipartimento di Scienze agroalimentari, ambientali e animali, Università di Udine, Udine, Italy
| | - Niccolò Jacumin
- Boehringer Ingelheim Animal Health Italia SpA, Milano, Italy
| | | | - Giorgio Leotti
- Boehringer Ingelheim Animal Health Italia SpA, Milano, Italy
| | - Andrea Luppi
- Isituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia – Romagna “Bruno Ubertini”, Brescia, Italy
| | - Luciana Mandrioli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| |
Collapse
|
30
|
de Souza AE, Cruz ACDM, Rodrigues IL, de Carvalho ECQ, Varella RB, Medina RM, Rodrigues RBR, Silveira RL, de Castro TX. Molecular detection of porcine circovirus (PCV2 and PCV3), torque teno swine virus 1 and 2 (TTSuV1 and TTSuVk2), and histopathological findings in swine organs submitted to regular slaughter in Southeast, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e000623. [PMID: 37521362 PMCID: PMC10374291 DOI: 10.29374/2527-2179.bjvm000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Porcine circovirus 2 and 3 (PCV2 and PCV3) and torque teno sus virus 1 and 2 (TTSuV1 and TTSuVk2) are important pathogens in pig associated with post-weaning mortality, different clinical syndromes in adults (PCVAD), and a decrease of average daily weight gain (PCV2-SI) but little is known about the infection on asymptomatic pigs. The aim of this study was to evaluate the presence of PCV2, PCV3, TTSuV1, and TTSuVk2 in swine organ samples from asymptomatic pigs slaughtered in Espírito Santo State, South-eastern Brazil, through molecular detection and histopathological analysis. Nested PCR showed the presence of PCV2 DNA in 10% (14/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and TTSuVk2 in 30% (42/140) of the tissue samples. All four viruses were detected in the lung, kidney, lymph node, and liver. TTSuVk2 was detecded in 30% (42/140), PCV3 in 13.6% (19/140), TTSuV1 in 12.9% (18/140), and PCV2 in 10% (14/140) of the samples. Single infections were observed in 30.7% (43/140), while co-detections in the same tissue occurred in 15.7% (22/140). The most frequent combinations were TTSuV1/TTSuVk2 in 31.8% (7/22), PCV2/TTSuVk2 in 18.1% (4/22), and PCV2/PCV3/TTSuVk2 in 13.6% (3/22). Lymphocyte depletion was associated with TTSuVk2 infection (p = 0.0041) suggesting that TTSuVK2 plays an induction of PMWS-like lymphoid lesions in pigs. The data obtained in this study show that PCV2, PCV3, TTSuV1, and TTSuVk2 are related to infection in asymptomatic animals with different tissue lesions, and the molecular diagnosis for these pathogens should be considered in the sanitary monitoring of herds.
Collapse
Affiliation(s)
- Amanda Eduarda de Souza
- Veterinarian, Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA), Departamento de Microbiologia e Parasitologia (MIP), Universidade Federal Fluminense (UFF). Niterói, RJ. Brazil.
| | | | - Ingrid Lyrio Rodrigues
- Veterinarian, MSc. PPGMPA, MIP, UFF. Niterói, RJ. Brazil.
- Veterinarian, DSc. Faculdade de Veterinária, Departamento de Zootecnia (MMO), UFF. Niterói, RJ. Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen JY, Wu CM, Chia MY, Huang C, Chien MS. A prospective CSFV-PCV2 bivalent vaccine effectively protects against classical swine fever virus and porcine circovirus type 2 dual challenge and prevents horizontal transmission. Vet Res 2023; 54:57. [PMID: 37434231 DOI: 10.1186/s13567-023-01181-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023] Open
Abstract
Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
32
|
Wu CF, Chen SH, Chou CC, Wang CM, Huang SW, Kuo HC. Serotype and multilocus sequence typing of Streptococcus suis from diseased pigs in Taiwan. Sci Rep 2023; 13:8263. [PMID: 37217544 DOI: 10.1038/s41598-023-33778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Streptococcus suis (S. suis) infection can cause clinically severe meningitis, arthritis, pneumonia and septicemia in pigs. To date, studies on the serotypes, genotypes and antimicrobial susceptibility of S. suis in affected pigs in Taiwan are rare. In this study, we comprehensively characterized 388 S. suis isolates from 355 diseased pigs in Taiwan. The most prevalent serotypes of S. suis were serotypes 3, 7 and 8. Multilocus sequence typing (MLST) revealed 22 novel sequence types (STs) including ST1831-1852 and one new clonal complex (CC), CC1832. The identified genotypes mainly belonged to ST27, ST94 and ST1831, and CC27 and CC1832 were the main clusters. These clinical isolates were highly susceptible to ceftiofur, cefazolin, trimethoprim/sulfamethoxazole and gentamicin. The bacteria were prone to be isolated from cerebrospinal fluid and synovial fluid in suckling pigs with the majority belonging to serotype 1 and ST1. In contrast, ST28 strains that corresponded to serotypes 2 and 1/2 were more likely to exist in the lungs of growing-finishing pigs, which posted a higher risk for food safety and public health. This study provided the genetic characterization, serotyping and the most current epidemiological features of S. suis in Taiwan, which should afford a better preventative and treatment strategy of S. suis infection in pigs of different production stages.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Siou-Hui Chen
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Szu-Wei Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan.
| |
Collapse
|
33
|
Guan Z, Pang L, Ouyang Y, Jiang Y, Zhang J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Secondary Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2) Infection Augments Inflammatory Responses, Clinical Outcomes, and Pathogen Load in Glaesserella-parasuis-Infected Piglets. Vet Sci 2023; 10:vetsci10050365. [PMID: 37235448 DOI: 10.3390/vetsci10050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (Gps), Gram-negative bacteria, are a universal respiratory-disease-causing pathogen in swine that colonize the upper respiratory tract. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2HP-PRRSV2) and Gps coinfections are epidemics in China, but little is known about the influence of concurrent coinfection on disease severity and inflammatory responses. Herein, we studied the effects of secondary HP-PRRS infection on clinical symptoms, pathological changes, pathogen load, and inflammatory response of Gps coinfection in the upper respiratory tract of piglets. All coinfected piglets (HP-PRRSV2 + Gps) displayed fever and severe lesions in the lungs, while fever was present in only a few animals with a single infection (HP-PRRSV2 or Gps). Additionally, HP-PRRSV2 and Gps loading in nasal swabs and blood and lung tissue samples was significantly increased in the coinfected group. Necropsy data showed that coinfected piglets suffered from severe lung damage and had significantly higher antibody titers of HP-PRRSV2 or Gps than single-infected piglets. Moreover, the serum and lung concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) were also significantly higher in coinfected piglets than in those infected with HP-PRRSV2 or Gps alone. In conclusion, our results show that HP-PRRSV2 promotes the shedding and replication of Gps, and their coinfection in the upper respiratory tract aggravates the clinical symptoms and inflammatory responses, causing lung damage. Therefore, in the unavoidable situation of Gps infection in piglets, necessary measures must be made to prevent and control secondary infection with HP-PRRSV2, which can save huge economic losses to the pork industry.
Collapse
Affiliation(s)
- Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yan Ouyang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| |
Collapse
|
34
|
Chen S, Li X, Zhang L, Zheng J, Yang L, Niu G, Zhang H, Ren Y, Qian J, Sun C, Ren L. Phylogenetic and Structural Analysis of Porcine Circovirus Type 2 from 2016 to 2021 in Jilin Province, China. Microorganisms 2023; 11:microorganisms11040983. [PMID: 37110406 PMCID: PMC10145682 DOI: 10.3390/microorganisms11040983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2) is widely distributed in pig farms. Up until now, nine genotypes of PCV2, PCV2a to 2i, have been identified in diseased pigs worldwide. This study analyzed 302 samples collected in the Jilin Province of China from 2016 to 2021, followed by genetic analysis of the PCV2 isolates. Meanwhile, the antigen epitopes, amino acid mutations, 3D structure of the PCV2 isolates and commercially available vaccine strains were evaluated and compared. The results showed that the predominant genotypes of PCV2 were PCV2b, followed by PCV2e and PCV2d in Jilin Province during 2016-2021. Although mutations were detected in the isolates, no recombination occurred in the PCV2 isolates, indicating a stable genotype of PCV2 in Jilin Province during these years. Moreover, the B cell epitopes in the Cap and Rep proteins of eighteen PCV2 isolates and T cell epitopes in the Cap of the isolates were changed compared to three currently used vaccine strains. The mutations in the Cap and Rep proteins did not affect their spatial conformation. Therefore, bivalent or multivalent vaccines with different genotypes of PCV2 might improve the protective effect of vaccines.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xue Li
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Lin Yang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guyu Niu
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Huimin Zhang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Ying Ren
- Public Computer Education and Research Center, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| |
Collapse
|
35
|
Cui Z, Zhou L, Hu X, Zhao S, Xu P, Li W, Chen J, Zhang Y, Xia P. Immune Molecules' mRNA Expression in Porcine Alveolar Macrophages Co-Infected with Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2. Viruses 2023; 15:v15030777. [PMID: 36992486 PMCID: PMC10058123 DOI: 10.3390/v15030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2) are economically important pathogens in swine, and pigs with dual infections of PCV2 and PRRSV consistently have more severe clinical symptoms and interstitial pneumonia. However, the synergistic pathogenesis mechanism induced by PRRSV and PCV2 co-infection has not yet been illuminated. Therefore, the aim of this study was to characterize the kinetic changes of immune regulatory molecules, inflammatory factors and immune checkpoint molecules in porcine alveolar macrophages (PAMs) in individuals infected or co-infected with PRRSV and/or PCV2. The experiment was divided into six groups: a negative control group (mock, no infected virus), a group infected with PCV2 alone (PCV2), a group infected with PRRSV alone (PRRSV), a PCV2-PRRSV co-infected group (PCV2-PRRSV inoculated with PCV2, followed by PRRSV 12 h later), a PRRSV-PCV2 co-infected group (PRRSV-PCV2 inoculated with PRRSV, followed by PCV2 12 h later) and a PCV2 + PRRSV co-infected group (PCV2 + PRRSV, inoculated with PCV2 and PRRSV at the same time). Then, PAM samples from the different infection groups and the mock group were collected at 6, 12, 24, 36 and 48 h post-infection (hpi) to detect the viral loads of PCV2 and PRRSV and the relative quantification of immune regulatory molecules, inflammatory factors and immune checkpoint molecules. The results indicated that PCV2 and PRRSV co-infection, regardless of the order of infection, had no effect on promoting PCV2 replication, while PRRSV and PCV2 co-infection was able to promote PRRSV replication. The immune regulatory molecules (IFN-α and IFN-γ) were significantly down-regulated, while inflammatory factors (TNF-α, IL-1β, IL-10 and TGF-β) and immune checkpoint molecules (PD-1, LAG-3, CTLA-4 and TIM-3) were significantly up-regulated in the PRRSV and PCV2 co-infection groups, especially in PAMs with PCV2 inoculation first followed by PRRSV. The dynamic changes in the aforementioned immune molecules were associated with a high viral load, immunosuppression and cell exhaustion, which may explain, at least partially, the underlying mechanism of the enhanced pulmonary lesions by dual infection with PCV2 and PRRSV in PAMs.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Xingxing Hu
- Zhongnong Huada (Wuhan) Testing Technology Co., Ltd., Luoshi South Road#519, Hongshan District, Wuhan 430070, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
36
|
Buragohain L, Barman NN, Sen S, Bharali A, Dutta B, Choudhury B, Suresh KP, Gaurav S, Kumar R, Ali S, Kumar S, Singh Malik Y. Transmission of African Swine Fever Virus to the Wild Boars of Northeast India. Vet Q 2023; 43:1-10. [PMID: 36786106 PMCID: PMC10124978 DOI: 10.1080/01652176.2023.2178689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND India recorded the first outbreak of African swine fever (ASF) in North-eastern region (NER) in the year 2020. AIM The current study was undertaken to investigate the transmission of African swine fever virus (ASFV) in the wild boars of Northeast India, particularly of Assam. MATERIAL AND METHODS ASF suspected mortal tissue remains and blood samples of wild boars collected from different locations of Assam were screened for molecular detection of swine viruses which includes Classical swine fever virus, Porcine Circovirus 2, Porcine reproductive and respiratory syndrome virus and ASFV. RESULTS One sample each from Manas and Nameri National Parks were detected positive for ASFV. Besides this, one of the samples was positive for CSFV and one of the ASFV positive samples was also positive for PCV2. Several striking gross and microscopic alterations were noticed in different organs of ASFV infected animals. Sequencing and phylogenetic analysis of B646L gene confirmed the presence of ASFV genotype-II in wild boars. Circulation of similar genotype in domestic pigs of NER in the contemporary period as well as locations near to the aforementioned national parks indicates the transmission of ASFV from domestic to wild boars. CLINICAL RELEVANCE The detection of ASFV in the wild boars of Assam is alarming as it is an impending threat to pig population and other endangered species (particularly Pygmy hog), making it increasingly daunting to control the disease. CONCLUSION Chances are high for ASFV to become endemic in Assam region if stringent measures are not taken at proper time.
Collapse
Affiliation(s)
- Lukumoni Buragohain
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Nagendra Nath Barman
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Suparna Sen
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Arpita Bharali
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Biswajit Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | | | | | | | - Rakesh Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Samsul Ali
- Wildlife Trust of India, CWRC, Kaziranga, Assam, India
| | - Sachin Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
37
|
Detection and Complete Genomic Analysis of Porcine circovirus 3 (PCV3) in Diarrheic Pigs from the Dominican Republic: First Report on PCV3 from the Caribbean Region. Pathogens 2023; 12:pathogens12020250. [PMID: 36839522 PMCID: PMC9959359 DOI: 10.3390/pathogens12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The increasing detection of Porcine circovirus 3 (PCV3, family Circoviridae) in clinically ill pigs worldwide has raised concerns on the implications of the virus on porcine health and the pork industry. Although pork production constitutes an important component of the livestock economy and is a major source of animal protein in the Caribbean Islands, there are no reports on PCV3 in pigs from the region so far. In the present study, PCV3 was detected in 21% (21/100) of diarrheic pigs (sampled at three farms) from the Caribbean nation of the Dominican Republic (DR). Although the sample size varied between porcine age groups, the highest PCV3 detection rates (35.3% each, respectively) were observed in piglets and growers. Co-infections with PCV2 and porcine adenovirus were observed in 38.09% and 9.52% of the PCV3 positive samples, respectively. The complete genomes of 11 DR PCV3 strains were analyzed in the present study, revealing a unique deletion (corresponding to nucleotide residue at position 1165 of reference PCV3 sequences) in one of the DR PCV3 sequences. Based on sequence identities and phylogenetic analysis (open reading frame 2 and complete genome sequences), the DR PCV3 strains were assigned to genotype PCV3a, and shared high sequence homologies (>98% identities) between themselves and with those of other PCV3a (Clade-1) strains, corroborating previous observations on the genetic stability of PCV3 worldwide. To our knowledge, this is the first report on the detection and molecular characterization of PCV3 in pigs from the Caribbean region, providing important insights into the expanding global distribution of the virus, even in isolated geographical regions (the Island of Hispaniola). Our findings warrant further investigations on the molecular epidemiology and economic implications of PCV3 in pigs with diarrhea and other clinical conditions across the Caribbean region.
Collapse
|
38
|
Liu H, Zou J, Liu R, Chen J, Li X, Zheng H, Li L, Zhou B. Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022. Vet Sci 2023; 10:vetsci10020106. [PMID: 36851410 PMCID: PMC9964870 DOI: 10.3390/vetsci10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are important DNA viruses that cause reproductive disorders in sows, which result in huge losses in pig husbandry, especially in China. The multiplex qPCR assay could be utilized as a simultaneous diagnostic tool for field-based surveillance and the control of ASFV, PCV2, and PRV. Based on the conserved regions on the p72 gene of ASFV, the Cap gene of PCV2, the gE gene of PRV, and the porcine endogenous β-Actin gene, the appropriate primers and probes for a multiplex TaqMan real-time PCR test effective at concurrently detecting three DNA viruses were developed. The approach demonstrated high specificity and no cross-reactivity with major pathogens related to swine reproductive diseases. In addition, its sensitivity was great, with a detection limit of 101 copies/L of each pathogen, and its repeatability was excellent, with intra- and inter-group variability coefficients of <2%. Applying this assay to detect 383 field specimens collected from 2020 to 2022, the survey data displayed that the ASFV, PCV2, and PRV single infection rates were 22.45%, 28.46%, and 2.87%, respectively. The mixed infection rates of ASFV + PCV2, ASFV + PRV, PCV2 + PRV, and ASFV + PCV2 + PRV were 5.22%, 0.26%, 1.83%, and 0.26%, respectively. Overall, the assay established in this study provides an effective tool for quickly distinguishing the viruses causing sow reproductive disorders, suggesting its huge clinical application value in the diagnosis of swine diseases.
Collapse
Affiliation(s)
- Huaicheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongchao Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haixue Zheng
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Long Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (L.L.); (B.Z.)
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (B.Z.)
| |
Collapse
|
39
|
Gomez-Betancur D, Vargas-Bermudez DS, Giraldo-Ramírez S, Jaime J, Ruiz-Saenz J. Canine circovirus: An emerging or an endemic undiagnosed enteritis virus? Front Vet Sci 2023; 10:1150636. [PMID: 37138920 PMCID: PMC10150634 DOI: 10.3389/fvets.2023.1150636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Canine Circovirus (CanineCV) belongs to the family Circoviridae. It is an emerging virus described for the first time in 2011; since then, it has been detected in different countries and can be defined as worldwide distribution virus. CanineCV infects domestic and wild canids and is mainly related to hemorrhagic enteritis in canines. However, it has been identified in fecal samples from apparently healthy animals, where in most cases it is found in coinfection with other viral agents such as the canine parvovirus type-2 (CPV). The estimated prevalence/frequency of CanineCV has been variable in the populations and countries where it has been evaluated, reaching from 1 to 30%, and there are still many concepts to define the epidemiological characteristics of the virus. The molecular characterization and phylo-evolutive analyses that allow to postulate the wild origin and intercontinental distribution of the virus. This review focuses on the importance on continuing research and establish surveillance systems for this emerging virus.
Collapse
Affiliation(s)
- Diana Gomez-Betancur
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Diana S. Vargas-Bermudez
- Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Centro de investigación en Infectología e Inmunología Veterinaria (CI3V), Sede Bogotá, Bogotá, Colombia
| | - Sebastian Giraldo-Ramírez
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Medellín, Colombia
| | - Jairo Jaime
- Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Centro de investigación en Infectología e Inmunología Veterinaria (CI3V), Sede Bogotá, Bogotá, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- *Correspondence: Julian Ruiz-Saenz,
| |
Collapse
|
40
|
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of Porcine Circovirus 2, 3, and 4 in East China from 2020 to 2022. Vet Sci 2022; 10:vetsci10010029. [PMID: 36669030 PMCID: PMC9860698 DOI: 10.3390/vetsci10010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and sensitive detection method is urgently needed to differentiate these three types. In this study, four pairs of specific primers and the corresponding probes for PCV 2, -3, and -4, and porcine endogenous gene β-Actin as the positive internal reference index, were designed to establish a TaqMan multiplex real-time PCR (qPCR) assay for the simultaneous differential diagnosis of different types of viruses. The results showed that this assay has good specificity and no cross-reactivity with other important porcine viral pathogens. Furthermore, it has high sensitivity, with a detection limit of 101 copies/μL, and good reproducibility, with intra- and inter-group coefficients of variation below 2%. Subsequently, 535 clinical samples of suspected sow reproductive disorders collected from Shandong, Zhejiang, Anhui, and Jiangsu provinces from 2020 to 2022 were analyzed using the established assay. The results showed that the individual positive rates of PCV2, PCV3, and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rate of PCV2, PCV3, and PCV4 was 28.22%. This indicated that this assay provides a convenient tool for the rapid detection and differentiation of PCV2, PCV3, and PCV4 in pig farms in East China. Our findings highlight that there are different types of porcine circovirus infection in pig farms in East China, which makes pig disease prevention and control difficult.
Collapse
|
41
|
Du F, Cao Z, Ye Z, He J, Zhang W, Zhang K, Ning P. Production and immunogenicity of a deoxyribonucleic acid Alphavirus vaccine expressing classical swine fever virus E2-Erns protein and porcine Circovirus Cap-Rep protein. Front Microbiol 2022; 13:1065532. [PMID: 36560936 PMCID: PMC9764008 DOI: 10.3389/fmicb.2022.1065532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Classical swine fever virus (CSFV) and porcine Circovirus type 2 (PCV2) are economically pivotal infectious disease viruses of swine. Alphaviral RNA replicon plasmids have been used as an important vector for constructing nucleic acid vaccines. Here, we aimed to construct a recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep for the prevention and control of CSFV and PCV2. Our results showed that the recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep was successfully constructed. The vaccine encoding E2 and Erns of CSFV, Cap, and Rep of PCV2 can induce E2, Erns, Cap, and Rep protein expression. ELISA analysis showed that mice-immunized pSCA1-E2-Erns-Cap-Rep plasmid vaccine produced higher anti-CSFV- and anti-PCV2-specific antibodies with dose- and time-dependent manners. Furthermore, neutralizing assays were measured using IF and ELISA methods. The results showed the production of neutralizing antibodies could neutralize CSFV (up to 210.13) and PCV2 (28.6) effectively, which exhibited the immune efficacy of the pSCA1-E2-Erns-Cap-Rep plasmid vaccine. Taken together, this pSCA1-E2-Erns-Cp-Rep plasmid vaccine could be considered a novel candidate vaccine against CSFV and PCV2.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Weijie Zhang
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Ke Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China,*Correspondence: Pengbo Ning,
| |
Collapse
|
42
|
Luka PD, Adedeji AJ, Jambol AR, Ifende IV, Luka HG, Choji ND, Weka R, Settypalli TBK, Achenbach JE, Cattoli G, Lamien CE, Molini U, Franzo G, Dundon WG. Coinfections of African swine fever virus, porcine circovirus 2 and 3, and porcine parvovirus 1 in swine in Nigeria. Arch Virol 2022; 167:2715-2722. [PMID: 36138234 DOI: 10.1007/s00705-022-05593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
As pig production increases in Africa, it is essential to identify the pathogens that are circulating in the swine population to assess pig welfare and implement targeted control measures. For this reason, DNA samples collected from pigs in Nigeria in the context of African swine fever monitoring were further screened by PCR for porcine circovirus 2 (PCV-2), porcine circovirus 3 (PCV-3), and porcine parvovirus 1 (PPV1). Forty-seven (45%) pigs were positive for two or more pathogens. Sequence analysis identified PCV-2 genotypes a, b, and d, while limited genetic heterogenicity was observed among PCV-3 strains. All except one of the PPV1 sequences were genetically distinct from those previously identified in other countries.
Collapse
Affiliation(s)
| | | | - Anvou R Jambol
- National Veterinary Institute, Vom, Plateau State, Nigeria
| | | | - Helen G Luka
- National Veterinary Institute, Vom, Plateau State, Nigeria
| | - Nyam D Choji
- National Veterinary Institute, Vom, Plateau State, Nigeria
| | - Rebecca Weka
- National Veterinary Institute, Vom, Plateau State, Nigeria
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, PO Box 100, 1400, Vienna, Austria
| | | | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, PO Box 100, 1400, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, PO Box 100, 1400, Vienna, Austria
| | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Neudamm Campus, Private Bag 13301, Windhoek, Namibia.,Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag 18137, Windhoek, Namibia
| | - Giovanni Franzo
- Dept. of Animal Medicine, Production and Health, University of Padova, Legnaro, viale dell'Università 16, 35020, Padova, Italy
| | - William G Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, PO Box 100, 1400, Vienna, Austria. .,Animal Production and Health Laboratory, IAEA, Friedenstrasse, 1, 2444, Seibersdorf, Austria.
| |
Collapse
|
43
|
Wang Y, Yan S, Ji Y, Yang Y, Rui P, Ma Z, Qiu HJ, Song T. First Identification and Phylogenetic Analysis of Porcine Circovirus Type 4 in Fur Animals in Hebei, China. Animals (Basel) 2022; 12:ani12233325. [PMID: 36496846 PMCID: PMC9737481 DOI: 10.3390/ani12233325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
A novel circovirus called porcine circovirus type 4 (PCV4) was recently detected in pigs suffering from severe clinical diseases in Hunan province, China. There are few reports on the origin and evolution of PCV4, although some researchers have conducted epidemiological investigations of PCV4 and found that PCV4 is widespread in pigs. Based on the previous study, we detected PCV2 in farmed foxes and raccoon dogs with reproductive failure. To explore whether the PCV4 genome also exists in fur animals, we detected 137 cases admitted from fur animal farms in Hebei China between 2015 and 2020, which were characterized by inappetence, lethargy, depression, abortion, and sterility. The overall infection rate of PCV4 was 23.36% (32/137), including 20.37% (22/108) for raccoon dogs, 18.75% (3/16) for foxes, and 53.85% (7/13) for minks. Finally, five raccoon dog-origin PCV4 strains and one fox-origin PCV4 strain were sequenced in our study, whose nucleotide identities with other representative PCV4 strains varied from 96.5% to 100%. Phylogenetic analysis based on the complete genomes of PCV4 strains indicated a close relationship with those of PCV4 strains identified from pigs. To our knowledge, this is the first study to detect PCV4 in fur animals. Interestingly, we also identified PCV4 in a mixed farm (feeding pigs and raccoon dogs at the same time). In summary, our findings extend the understanding of the molecular epidemiology of PCV4 and provide new evidence for its cross-species transmission.
Collapse
Affiliation(s)
- Yanjin Wang
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shijie Yan
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yuting Ji
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yujie Yang
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Ping Rui
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zengjun Ma
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (T.S.)
| | - Tao Song
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (H.-J.Q.); (T.S.)
| |
Collapse
|
44
|
Liu ZH, Deng ZF, Lu Y, Fang WH, He F. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. J Nanobiotechnology 2022; 20:493. [PMID: 36424615 PMCID: PMC9685936 DOI: 10.1186/s12951-022-01710-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.
Collapse
Affiliation(s)
- Ze-Hui Liu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Zhuo-Fan Deng
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Ying Lu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Wei-Huan Fang
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| | - Fang He
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
45
|
Yang Y, Xu T, Wen J, Yang L, Lai S, Sun X, Xu Z, Zhu L. Prevalence and phylogenetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) in the Southwest of China during 2020-2022. Front Vet Sci 2022; 9:1042792. [PMID: 36504840 PMCID: PMC9731358 DOI: 10.3389/fvets.2022.1042792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Porcine circovirus type 2 (PCV2) is considered one of the viruses with substantial economic impact on swine industry in the word. Recently, porcine circovirus type 3 (PCV3) has been found to be associated with porcine dermatitis and nephropathy syndrome (PDNS)-like disease. And the two viruses were prone to co-infect clinically. Methods To further investigate the prevalence and genetic diversity of the two viruses, 257 pig samples from 23 different pig farms in southwest China with suspected PCVAD at different growth stages were analyzed by real-time PCR between 2020 and 2022 to determine the presence of PCV2 and PCV3. Results Results showed high prevalence of PCV2 and PCV3: 26.46% samples were PCV2 positive and 33.46% samples were PCV3 positive. The coinfection rate was doubled from 2020 (5.75%) to 2022 (10.45%). Subsequently, the whole genome sequences of 13 PCV2 and 18 PCV3 strains were obtained in this study. Of these, 1 strain was PCV2a, 5 strains were PCV2b and 7 strains were PCV2d, indicating that PCV2d was the predominant PCV2 genotype prevalent in the Southwest of China. Discussion In addition, the phylogenetic analysis of PCV3 showed high nucleotide homology (>98%) between the sequences obtained in this study and reference sequences. And 3 mutations (A24V, R27K and E128D) were found in PCV3 antibody recognition domains, which might be related to the mechanism of viral immune escape. Thus, this study will enhance our understanding of the molecular epidemiology and evolution of PCV2 and PCV3, which are conducive to the further study of the genotyping, immunogenicity and immune evasion of PCVs.
Collapse
Affiliation(s)
- Yanting Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhua Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luyu Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China,*Correspondence: Ling Zhu
| |
Collapse
|
46
|
TGF-β from the Porcine Intestinal Cell Line IPEC-J2 Induced by Porcine Circovirus 2 Increases the Frequency of Treg Cells via the Activation of ERK (in CD4 + T Cells) and NF-κB (in IPEC-J2). Viruses 2022; 14:v14112466. [PMID: 36366564 PMCID: PMC9698303 DOI: 10.3390/v14112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Porcine circovirus 2 (PCV2) causes immunosuppression. Piglets infected with PCV2 can develop enteritis. Given that the gut is the largest immune organ, however, the response of the gut's immune system to PCV2 is still unclear. Here, IPEC-J2 cells with different treatments were co-cultured with PBMC or CD4+ T cells (Transwell). Flow cytometry and Western blotting revealed that PCV2-infected IPEC-J2 increased the frequency of CD4+ T cells among piglets' peripheral blood mononuclear cells (PBMCs) and caused CD4+ T cells to undergo a transformation into Foxp3+ regulatory T cells (Treg cells) via activating CD4+ T ERK. Cytokines production and an inhibitor assay showed that the induction of Tregs by PCV2-infected IPEC-J2 was dependent on TGF-β induced by PCV2 in IPEC-J2, which was associated with the activation of NF-κB. Taken together, PCV2-infected IPEC-J2 activated NF-κB to stimulate the synthesis of TGF-β, which enhanced the differentiation of CD4+ T cells into Treg cells through the activation of ERK in CD4+ T cells. This information sheds light on PCV2's function in the intestinal immune system and suggests a potential immunosuppressive mechanism for PCV2 infection.
Collapse
|
47
|
Areekit S, Tangjitrungrot P, Khuchareontaworn S, Rattanathanawan K, Jaratsing P, Yasawong M, Chansiri G, Viseshakul N, Chansiri K. Development of Duplex LAMP Technique for Detection of Porcine Epidemic Diarrhea Virus (PEDV) and Porcine Circovirus Type 2 (PCV 2). Curr Issues Mol Biol 2022; 44:5427-5439. [PMID: 36354680 PMCID: PMC9689611 DOI: 10.3390/cimb44110368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 2 (PCV2) are both important global pathogenic viruses which have a significant impact on the swine industry. In this study, a duplex loop-mediated isothermal amplification (duplex LAMP) method was developed in combination with lateral flow dipstick (LFD) for simultaneous detection of PEDV and PCV2 using specific sets of primers and probes designed based on the conserved regions of a spike gene (KF272920) and an ORF gene (EF493839), respectively. The limit of detection (LOD) values of the duplex LAMP-LFD for the detection of PEDV and PCV2 were 0.1 ng/µL and 0.246 ng/µL, respectively. The LOD of duplex LAMP-LFD was 10-times more sensitive than conventional PCR and RT-PCR-agarose gel-electrophoresis (PCR-AGE and RT-PCR-AGE). No cross-reaction to each other and to other pathogenic viruses that can infect pigs were observed according to analytical specificity tests. The duplex LAMP-LFD method for the simultaneous detection of PEDV and PCV2 co-infection could be completed within approximately 1.5 h, and only a simple heating block was required for isothermal amplification. The preliminary validation using 50 swine clinical samples with positive and negative PEDV and/or PCV2 revealed that the sensitivity, specificity, and accuracy of duplex LAMP-LFD were all 100% in comparison to conventional PCR and RT-PCR. Hence, this study suggests that duplex LAMP-LFD is a promising tool for the early detection and initial screening of PEDV and PCV2, which could be beneficial for prevention, planning, and epidemiological surveys of these diseases.
Collapse
Affiliation(s)
- Supatra Areekit
- Innovative Learning Center, Srinakharinwirot University, Bangkok 10110, Thailand
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pongbun Tangjitrungrot
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | - Pornpun Jaratsing
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Montri Yasawong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Gaysorn Chansiri
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nareerat Viseshakul
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kosum Chansiri
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
48
|
Nguyen VG, Dang HA, Nguyen TT, Huynh TML, Nguyen BH, Pham LAM, Le HTP. Polymerase chain reaction-based detection of coinfecting DNA viruses in Vietnamese pigs in 2017 and 2021. Vet World 2022; 15:2491-2498. [DOI: 10.14202/vetworld.2022.2491-2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Many studies have reported on the phenomenon of co-infections involving two or more pathogens (bacteria or viruses) over the past few years. However, very few studies on this issue were conducted in Vietnam. Therefore, this study aimed to determine the circulation of single and multiple porcine parvovirus (PPV) (e.g., PPV1, PPV2, PPV3, and PPV4), porcine bocavirus (PBoV), and torque teno virus (TTV) (TTV1 and TTV2) infections in Vietnamese pigs.
Materials and Methods: A total of 174 porcine circovirus 2-positive samples from pigs (n = 86 for 2017 and n = 88 for 2021), including from the sera and internal organs, across 11 provinces were examined by polymerase chain reaction.
Results: This study demonstrated the wide distribution of DNA viruses among pig farms in Vietnam in 2021, with the detection rate for PPV ranging from 3.4% to 27.3% among PPV1-PPV4. Moreover, the detection rates of TTV genotypes were confirmed to be 14.8% (TTV1) and 63.6% (TTV2), respectively, and the positive rate of PBoV was 65.9%. The most frequent combinations were double and triple infections. Double infection was found in 16/86 (18.6%) in 2017 and 26/88 (29.5%) in 2021, while triple infection was found at 19/86 (22.1%) in 2017 and 26/88 (29.5%) in 2021. The incidence of simultaneous detection of more than three viruses was low.
Conclusion: These results provide at least partial information about the occurrence of three viruses, including PPV (including PPV1 to 4), PBoV, and TTV (TTV1 and TTV2), in pigs. Determination of particular viruses in pigs will help to prevent the porcine respiratory disease complex caused by DNA viruses in Vietnamese pigs in the future.
Collapse
Affiliation(s)
- Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Huu Anh Dang
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Trung Nguyen
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ba Hien Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Le Anh Minh Pham
- Department of Microbiology Technology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Huynh Thanh Phuong Le
- Department of the Science and Technology, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
49
|
Synergistic pathogenicity by coinfection and sequential infection with JXA1-like HP-PRRSV and PCV2d in PCV2 antibody-positive post-weaned pigs. Microb Pathog 2022; 173:105810. [PMID: 36183959 DOI: 10.1016/j.micpath.2022.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine circovirus (PCV) are two important pathogens, which caused respiratory disease in pigs. PRRSV and PCV2 had caused great economic losses to the pig industry. Pigs coinfection with PCV2 and PRRSV were common in the clinic, PCV2 antibodies can be detected in most of the pigs. PCV2d and HP-PRRSV(JXA1-like) were two major viruses circulating in the pigs in China. In this study, HP-PRRSV (JXA1-like) and PCV2d were used to coinfect and (or) sequential infect 5-week-old weaned PCV2-antibody positive pigs and the clinical indications, pathological, virus load, and specific antibodies of the challenged post-weaned piglets were evaluated. Thirty 5-week-old post-weaned pigs were divided into six groups infected with PBS, PCV2, PRRSV, PCV2-PRRSV, PRRSV-PCV2, and Co-PRRSV-PCV2 according to the PCV2 specific antibodies. Pigs infected with PRRSV can experience diarrhea, increased body temperature, weight loss, and even death. The pigs in PRRSV and PRRSV-PCV2 infected groups showed severe clinical symptoms, high mortality, and low average daily gain. The main pathological changes were widening of the lung interstitium, lung adhesion, and so on. The PRRSV-PCV2-infected group showed high levels of TNF-α and IL-2. In conclusion, PRRSV and PRRSV-PCV2 sequential infected pigs showed most pathogenic signs, and PCV2-PRRSV sequential infected pigs showed less pathogenicity than pigs of PCV2 and PRRSV coinfection and PRRSV monoinfection from day 10-14, partially suppressing the cytokine storm produced by PRRSV.
Collapse
|
50
|
Du S, Xu F, Lin Y, Wang Y, Zhang Y, Su K, Li T, Li H, Song Q. Detection of Porcine Circovirus Type 2a and Pasteurella multocida Capsular Serotype D in Growing Pigs Suffering from Respiratory Disease. Vet Sci 2022; 9:vetsci9100528. [PMID: 36288141 PMCID: PMC9607208 DOI: 10.3390/vetsci9100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
In order to diagnose a respiratory disease in a pig farm, the lungs, spleen, and lymph nodes of three dead pigs were collected for pathogen detection by PCR and isolation on the basis of preliminary clinical diagnosis. The virus isolate was identified by gene sequence analysis and Immunoperoxidase monolayer assay (IPMA). The bacterial isolate was identified by biochemical tests, 16S rDNA sequence analysis, and species- and serotype-specific PCR, and the pathogenicity was analyzed. Porcine circovirus type 2a (PCV2a) genotype from the lungs, spleen, and lymph nodes and Pasteurella (P.) multocida capsular serotypes D from the lungs were found. The PCV2a isolates could specifically bound the anti-PCV2-Cap polyclonal antibody. The 16S rDNA sequence of P. multocida isolates had 99.9% identity with that of the strain from cattle, and the isolate was highly pathogenic to mice. The results showed that the co-infection of PCV2a and P. Multocida capsular serotypes D should be responsible for the disease. The uncommon PCV2a is still prevalent in some pig farms besides the dominant PCV2d genotype. This study could provide important etiological information for effective control and treatment of the disease in pig farms.
Collapse
Affiliation(s)
- Shuailong Du
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Fan Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yidan Lin
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yawen Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Zhang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Kai Su
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tanqing Li
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| | - Qinye Song
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| |
Collapse
|