1
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Yang F, Zhou J, Huang H, Cai S, Zhang Y, Wen F, Zhao M, Zhang K, Qin L. Isolation of a more aggressive GVI-1 genotype strain HX of the avian infectious bronchitis virus. Poult Sci 2024; 103:104285. [PMID: 39326178 PMCID: PMC11459636 DOI: 10.1016/j.psj.2024.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The avian infectious bronchitis virus (IBV) poses a significant economic threat to the global poultry industry. Although in recent years, the GVI-1 lineage of IBV has proliferated throughout China, there is still a lack of comprehensive studies regarding the pathogenicity of this lineage, particularly with respect to infections of the digestive tract and the antigenic characteristics of the S1 gene. In this study, we investigated the effects of infecting 14-day-old chicks with the HX strain of the GVI-1 lineage over a 14-d period postinfection. Assessment of the pathogenicity of the HX strain included clinical observations; monitoring of body weight, organ viral load, viral shedding, and gross anatomy; histopathological analysis, and bioinformatics-based antigenic characterization of the S1 protein. The findings revealed that compared with previously reported GVI-1 lineage strains, the HX strain is characterized by greater virulence, with infection leading to approximately 26% mortality and extensive severe organ damage, including that of the proventriculus and kidneys. Moreover, at 14 d postinfection, 80% of oral swabs and 100% of cloacal swabs from chickens infected with the HX strain tested positive, indicating a prolonged period of viral shedding relative to that previously reported for GVI-1 lineage strains. Bioinformatic analysis of B-cell epitopes on the S1 protein revealed 7 potential antigenic epitopes. Collectively, our findings in this study provide clear evidence to indicate that compared previously reported GVI-1 lineage strains, chicks infected with the IBV GVI-1 lineage strain HX are characterized by heightened rates of mortality, more pronounced organ damage, and an extended period of viral shedding. This comprehensive characterization highlights the pathogenic potential of the GVI-1 lineage and its capacity to induce severe kidney and proventriculus damage, thereby emphasizing the imperative of early initiated preventive measures. Furthermore, on the basis of our analysis of the antigenic properties of the S1 protein, we have identified 7 potential linear B-cell epitopes, which will provide valuable insights for the development of epitope-based vaccines.
Collapse
Affiliation(s)
- Fan Yang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Jun Zhou
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Hongbin Huang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Shikai Cai
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Yun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Feng Wen
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Mengmeng Zhao
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Keshan Zhang
- School of Animal Science and Technology, Foshan University, Foshan 528231, China
| | - Limei Qin
- School of Animal Science and Technology, Foshan University, Foshan 528231, China.
| |
Collapse
|
3
|
Chen Y, Feng C, Huang C, Shi Y, Omar SM, Zhang B, Cai G, Liu P, Guo X, Gao X. Preparation of polyclonal antibodies to chicken P62 protein and its application in nephropathogenic infectious bronchitis virus-infected chickens. Int J Biol Macromol 2024; 271:132515. [PMID: 38768912 DOI: 10.1016/j.ijbiomac.2024.132515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
p62, also known as SQSTM1, has been shown to be closely related to the coronavirus. However, it remains unclear on the relationship between p62 and NIBV infection. Moreover, there are no available antibodies against the chicken p62 protein. Thus, this study aimed to prepare p62 polyclonal antibody and investigate the correlation between the p62 protein and NIBV infection. Here, PET-32a-p62 prokaryotic fusion expression vector was constructed for prokaryotic protein expression, and then p62 polyclonal antibody was prepared by immunizing rabbits. Lastly, these antibodies were then utilized in Western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) assays. The results showed that we successfully prepared chicken p62 polyclonal antibody. Meanwhile, WB and IF demonstrated that the expression of p62 showed a trend of first increase and then decrease after NIBV infection. IHC showed that the expression of p62 in the spleen, lung, kidney, bursa of Fabricius and trachea of chickens infected with NIBV in 11 dpi was significantly higher than that of normal chickens. Taken together, this study successfully prepared a polyclonal antibody for chicken p62 protein and confirmed its application and expression in chickens, as well as the expression of p62 in tissues after NIBV infection.
Collapse
Affiliation(s)
- Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingqing Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Li J, Ding J, Chen K, Xu X, Shao Y, Zhang D, Yu X, Guo C, Qian J, Ding Z. Protective effects of a novel chimeric virus-like particle vaccine against virulent NDV and IBDV challenge. Vaccine 2024; 42:332-338. [PMID: 38065771 DOI: 10.1016/j.vaccine.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.
Collapse
Affiliation(s)
- Jindou Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kainan Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaohong Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanan Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xibing Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chunhong Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhuang Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Liu X, Zhu H, Wang M, Zhang N, Wang J, Tan W, Wu G, Yu P, Liu H, Liu Q. An enterovirus A71 virus-like particle with replaced loops confers partial cross-protection in mice. Virus Res 2023; 337:199235. [PMID: 37788720 PMCID: PMC10562737 DOI: 10.1016/j.virusres.2023.199235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Enterovirus A71 (EV-A71), coxsackievirus A16 (CV-A16), and CV-A10 belong to the main prevailing types causing hand-foot-and-mouth disease. Since EV-A71 monovalent vaccine does not confer cross-protection, developing a multivalent vaccine is essential. In this study, a trivalent chimeric virus-like particle of EV-A71 (EV-A71-VLPCHI3) was constructed based on EV-A71-VLP backbone by replacing the corresponding surface loops with CV-A16 VP1 G-H, CV-A10 VP1 B-C and E-F loops, which are critical for immunogenic neutralization. The baculovirus-insect cell expression system was employed for EV-A71-VLPCHI3 production. EV-A71-VLPCHI3 was purified by sucrose density gradient and observed by transmission electron microscopy. The immunogenicity and protective efficacy of EV-A71-VLPCHI3 were evaluated in mice. Our results revealed that EV-A71-VLPCHI3 had a similar morphology to inactivated EV-A71 particles and could induce specific IgG antibodies against EV-A71, CV-A16 and CV-A10 in mice. More importantly, EV-A71-VLPCHI3 enhanced cross-reactive protection against CV-A16 and CV-A10, by 20 % and 40 %, compared to inactivated EV-A71 counterparts, respectively. In conclusion, the successful construction of EV-A71-VLPCHI3 suggested that loop-dependent heterologous protection could be transferred by loops replacement on the surface of viral capsid. This strategy may also supplement the development of multivalent vaccines against other infectious viral diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Hanyu Zhu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Mei Wang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China
| | - Jing Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China
| | - Wenbian Tan
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Guochuan Wu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China; College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, China; Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541100, China.
| |
Collapse
|
7
|
Firouzamandi M, Helan JA, Moeini H, Soleimanian A, Khatemeh S, Hosseini SD. Developing a vaccine against velogenic sub-genotype seven of Newcastle disease virus based on virus-like particles. AMB Express 2023; 13:114. [PMID: 37848725 PMCID: PMC10582001 DOI: 10.1186/s13568-023-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
In the present study, for the first time, we released and assembled the particles of three major structural proteins of velogenic NDV (M, HN, and F glycoproteins) as a NDV-VLPs. The ElISA result of the cytokines of splenocyte suspension cells showed that IL2, IL10, TNF-α, and IFN- ˠ titers were significantly higher (p ≤ 0.05) in mice that were immunized only with NDV-VLPs three times with a 10-day interval, in comparison to those that were immunized with NDV-VLPs twice in a 10-day interval and received a B1 live vaccine boost on the third interval. Flow cytometry results showed that CD8 + titers in the group that only received NDV-VLP was higher than other group. However, serum ELISA results did not show a significantly (p ≥ 0.05) higher NDV antibody titer in NDV-VLPs immunized mice compared to the boosted group. Besides, HI results of SPF chickens vaccinated with NDV-VLPs and boosted with B1 live vaccine were significantly (p ≤ 0.05) higher than those that only received NDV-VLPs. Interestingly, after challenging with NDV sub-genotype VII, all the chickens that were solely vaccinated with NDV-VLPs remained alive (six out of six), whereas two out of six chickens that were vaccinated with NDV-VLPs and also received the B1 live vaccine boost died. In conclusion, our results strongly indicated that the T-cell immune response in an NDV host is more important than the B-cell response. Also, the results of the present study revealed that to completely protect chickens against velogenic NDV strains, a vaccine comprising specific epitopes of velogenic strain is needed.
Collapse
Affiliation(s)
- Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hassan Moeini
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeed Khatemeh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
8
|
Sepotokele KM, O'Kennedy MM, Hayes MC, Wandrag DBR, Smith P, Abolnik C. Efficacy of a plant-produced infectious bronchitis virus-like particle vaccine in specific pathogen-free chickens. Poult Sci 2023; 102:102953. [PMID: 37542940 PMCID: PMC10407904 DOI: 10.1016/j.psj.2023.102953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
Infectious bronchitis (IB) Gammacoronavirus causes a highly contagious respiratory disease in chickens that is listed by the World Organisation for Animal Health (WOAH). Its high mutation ability has resulted in numerous variants against which the commercially available live or recombinant vaccines singly offer limited protection. Agrobacterium-mediated transient expression in Nicotiana benthamiana (tobacco) plants was used here to produce a virus-like particle (VLP) vaccine expressing a modified full-length IBV spike (S) protein of a QX-like IB variant. In a challenge study with the homologous live IB QX-like virus, VLP-vaccinated birds produced S protein-specific antibodies comparable to those produced by live-vaccinated birds seroconverting with mean geometric titers of 6.8 and 7.2 log2, respectively. The VLP-vaccinated birds had reduced oropharyngeal and cloacal viral shedding compared to an unvaccinated challenged control and were more protected against tracheal ciliostasis than the live-vaccinated birds. While the results appeared similar, plant-produced IB VLPs are safer, more affordable, easier to produce and update to antigenically match any emerging IB variant, making them a more suitable alternative to IBV control than live-attenuated vaccines.
Collapse
Affiliation(s)
- Kamogelo M Sepotokele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Martha M O'Kennedy
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; Next Generation Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Michaela C Hayes
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Daniel B R Wandrag
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Peter Smith
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
10
|
Hu Z, He X, Deng J, Hu J, Liu X. Current situation and future direction of Newcastle disease vaccines. Vet Res 2022; 53:99. [PMID: 36435802 PMCID: PMC9701384 DOI: 10.1186/s13567-022-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Li H, Ni R, Wang K, Tian Y, Gong H, Yan W, Tang Y, Lei C, Wang H, Yang X. Chicken interferon-induced transmembrane protein 1 promotes replication of coronavirus infectious bronchitis virus in a cell-specific manner. Vet Microbiol 2022; 275:109597. [PMCID: PMC9616511 DOI: 10.1016/j.vetmic.2022.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit numerous virus infections by impeding viral entry into target cells. However, increasing evidence suggests diverse functions of IFITMs in virus infection, especially with the coronavirus. We analyzed the effect of chicken interferon-induced transmembrane proteins (chIFITMs) on coronavirus infectious bronchitis virus (IBV) infection in vitro. We demonstrated that the antiviral effects of IFITMs are dependent on cell and virus types. The overexpression of chIFITM1 dramatically promoted the replication of IBV Beaudette strain in the chicken hepatocellular carcinoma cell line, LMH. Mechanistically, chIFITMs share roughly the same subcellular localization in different host cells, and overexpressed of chIFITM1 have no effect of viral attachment and entry. Further studies revealed that mutations of amino acids at key positions (60KSRD63, 68KDFV71) in the intracellular loop domain (CIL) caused loss of the promoted function. Interaction with downstream proteins in co-response to viral infection could be the primary reason behind variable functions of chIFITM1 in different cells. In all, our study explored the functions of chIFITMs in viral infection from a new perspective.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ruiqi Ni
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yiming Tian
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Huilin Gong
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China,Corresponding author at: Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Tian G, Shi Y, Cao X, Chen W, Gu Y, Li N, Huang C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Preparation of the RIPK3 Polyclonal Antibody and Its Application in Immunoassays of Nephropathogenic Infectious Bronchitis Virus-Infected Chickens. Viruses 2022; 14:v14081747. [PMID: 36016369 PMCID: PMC9412573 DOI: 10.3390/v14081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3) is a vital serine/threonine kinase in regulating the programmed destruction of infected cells to defend against RNA viruses. Although the role of RIPK3 in viruses in mice is well characterized, it remains unclear where in nephropathogenic infectious bronchitis virus (NIBV) in chickens. Here, we use a self-prepared polyclonal antibody to clarify the abundance of RIPK3 in tissues and define the contributions of RIPK3 in tissue damage caused by NIBV infection in chickens. Western blot analyses showed that RIPK3 polyclonal antibody can specifically recognize RIPK3 in the vital tissues of Hy-Line brown chicks and RIPK3 protein is abundantly expressed in the liver and kidney. Moreover, NIBV significantly upregulated the expression levels of RIPK3 in the trachea and kidney of chicks in a time-dependent manner. In addition, the activation of necroptosis in response to NIBV infection was demonstrated by the coimmunoprecipitation (CoIP) experiments through RIPK3 in the necrosome, which phosphorylates its downstream mixed-spectrum kinase structural domain-like protein (MLKL). Our findings offered preliminary insights into the key role of RIPK3 protein in studying the underlying mechanism of organ failure caused by NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (X.G.); (X.G.); Tel.: +86-13870917561 (X.G.); +86-15195717316 (X.G.)
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (X.G.); (X.G.); Tel.: +86-13870917561 (X.G.); +86-15195717316 (X.G.)
| |
Collapse
|
13
|
Zhang Y, Yuan Y, Zhang LH, Zhu D, Wang L, Wei LP, Fan WS, Zhao CR, Su YJ, Liao JQ, Yong L, Wei TC, Wei P, Mo ML. Construction and Immunogenicity Comparison of Three Virus-Like Particles Carrying Different Combinations of Structural Proteins of Avian Coronavirus Infectious Bronchitis Virus. Vaccines (Basel) 2021; 9:vaccines9020146. [PMID: 33670249 PMCID: PMC7918244 DOI: 10.3390/vaccines9020146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses massive economic losses in the global poultry industry. Here, we firstly report the construction and immunogenicity comparison of virus-like particles (VLPs) carrying the S, M and E proteins (SME-VLPs); VLPs carrying the S and M proteins (SM-VLPs); and VLPs carrying the M and E proteins (ME-VLPs) from the dominant serotype representative strain GX-YL5 in China. The neutralizing antibody response induced by the SME-VLPs was similar to that induced by the inactivated oil vaccine (OEV) of GX-YL5, and higher than those induced by the SM-VLPs, ME-VLPs and commercial live vaccine H120. More importantly, the SME-VLPs elicited higher percentages of CD4+ and CD8+ T lymphocytes than the SM-VLPs, ME-VLPs and OEV of GX-YL5. Compared with the OEV of GX-YL5, higher levels of IL-4 and IFN-γ were also induced by the SME-VLPs. Moreover, the mucosal immune response (sIgA) induced by the SME-VLPs in the tear and oral swabs was comparable to that induced by the H120 vaccine and higher than that induced by the OEV of GX-YL5. In the challenge experiment, the SME-VLPs resulted in significantly lower viral RNA levels in the trachea and higher protection scores than the OEV of GX-YL5 and H120 vaccines, and induced comparable viral RNA levels in the kidneys, and tear and oral swabs to the OEV of GX-YL5. In summary, among the three VLPs, the SME-VLPs carrying the S, M and E proteins of IBV could stimulate the strongest humoral, cellular and mucosal immune responses and provide effective protection, indicating that it would be an attractive vaccine candidate for IB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ping Wei
- Correspondence: (P.W.); (M.-L.M.); Tel.: +86-771-323-5638 (P.W.); +86-771-323-5635 (M.-L.M.)
| | - Mei-Lan Mo
- Correspondence: (P.W.); (M.-L.M.); Tel.: +86-771-323-5638 (P.W.); +86-771-323-5635 (M.-L.M.)
| |
Collapse
|
14
|
Design and Characterization of a DNA Vaccine Based on Spike with Consensus Nucleotide Sequence against Infectious Bronchitis Virus. Vaccines (Basel) 2021; 9:vaccines9010050. [PMID: 33466810 PMCID: PMC7830736 DOI: 10.3390/vaccines9010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) causes severe economic losses in the poultry industry, but its control is hampered by the continuous emergence of new genotypes and the lack of cross-protection among different IBV genotypes. We designed a new immunogen based on a spike with the consensus nucleotide sequence (S_con) that may overcome the extraordinary genetic diversity of IBV. S_con was cloned into a pVAX1 vector to form a new IBV DNA vaccine, pV-S_con. pV-S_con could be correctly expressed in HD11 cells with corresponding post-translational modification, and induced a neutralizing antibody response to the Vero-cell-adapted IBV strain Beaudette (p65) in mice. To further evaluate its immunogenicity, specific-pathogen-free (SPF) chickens were immunized with the pV-S_con plasmid and compared with the control pVAX1 vector and the H120 vaccine. Detection of IBV-specific antibodies and cell cytokines (IL-4 and IFN-γ) indicated that vaccination with pV-S_con efficiently induced both humoral and cellular immune responses. After challenge with the heterologous strain M41, virus shedding and virus loading in tissues was significantly reduced both by pV-S_con and its homologous vaccine H120. Thus, pV-S_con is a promising vaccine candidate for IBV, and the consensus approach is an appealing method for vaccine design in viruses with high variability.
Collapse
|
15
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
16
|
The Construction and Immunoadjuvant Activities of the Oral Interleukin-17B Expressed by Lactobacillus plantarum NC8 Strain in the Infectious Bronchitis Virus Vaccination of Chickens. Vaccines (Basel) 2020; 8:vaccines8020282. [PMID: 32517220 PMCID: PMC7350006 DOI: 10.3390/vaccines8020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-17B (IL-17B) is a protective cytokine of the IL-17 family and plays an essential role in the regulation of mucosal inflammation. However, little is known about the role of IL-17B in the control of viral infections. In this study, a recombinant Lactobacillus plantarum, designated as NC8-ChIL17B, was constructed to express the chicken IL-17B (ChIL-17B) gene. The recombinant ChIL17B (rChIL17B) protein was about 14 kDa and was anchored to the surface of NC8 cells. In vitro, it was found that the rChIL17B protein inhibited the proliferation of the infectious bronchitis virus (IBV) through activation of nuclear factor kappa B (NF-κB) and the JAK (Janus kinase)-STAT (signal transducers and activators of transcription) signaling. Moreover, to evaluate the immunoadjuvant activities of NC8-ChIL17B, 40 three-day-old specific pathogen-free (SPF) chickens were divided into four groups. Three groups were orally vaccinated with fresh NC8, NC8-ChIL17B, and phosphate buffered saline (PBS), along with the infectious bronchitis virus vaccine, and the other group was the PBS-negative control. The results of the IBV-specific antibody titer and the concentration of the cytokines IL-2, IL-4, IL-6, and interferon gamma (IFN-γ) in sera, as well as the concentration of secretory immunoglobulin A (sIgA) in the tracheal and small intestinal mucosa, the number of cluster of differentiation 4 positive (CD4+) and cluster of differentiation 8 positive (CD8+) T cells in the blood, and the expression of immune-related genes all indicated that NC8-ChIL17B efficiently enhanced the humoral and cellular immune responses to IBV vaccine. Moreover, the viral loads in the NC8-ChIL17B- and IBV-vaccinated group were significantly lower than in the control groups, suggesting a significant promotion of the immunoprotection of IBV vaccination against the virulent IBV strain. Therefore, ChIL-17B is a promising, effective adjuvant candidate for chicken virus vaccines.
Collapse
|
17
|
Xu P, Liu P, Zhou C, Shi Y, Wu Q, Yang Y, Li G, Hu G, Guo X. A Multi-Omics Study of Chicken Infected by Nephropathogenic Infectious Bronchitis Virus. Viruses 2019; 11:v11111070. [PMID: 31744152 PMCID: PMC6893681 DOI: 10.3390/v11111070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Chicken gout resulting from nephropathogenic infectious bronchitis virus (NIBV) has become a serious kidney disease problem in chicken worldwide with alterations of the metabolic phenotypes in multiple metabolic pathways. To investigate the mechanisms in chicken responding to NIBV infection, we examined the global transcriptomic and metabolomic profiles of the chicken’s kidney using RNA-seq and GC–TOF/MS, respectively. Furthermore, we analyzed the alterations in cecal microorganism composition in chickens using 16S rRNA-seq. Integrated analysis of these three phenotypic datasets further managed to create correlations between the altered kidney transcriptomes and metabolome, and between kidney metabolome and gut microbiome. We found that 2868 genes and 160 metabolites were deferentially expressed or accumulated in the kidney during NIBV infection processes. These genes and metabolites were linked to NIBV-infection related processes, including immune response, signal transduction, peroxisome, purine, and amino acid metabolism. In addition, the comprehensive correlations between the kidney metabolome and cecal microbial community showed contributions of gut microbiota in the progression of NIBV-infection. Taken together, our research comprehensively describes the host responses during NIBV infection and provides new clues for further dissection of specific gene functions, metabolite affections, and the role of gut microbiota during chicken gout.
Collapse
Affiliation(s)
- Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Qingpeng Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Yitian Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
- Correspondence: (G.H.); (X.G.)
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (P.X.); (P.L.); (C.Z.); (Q.W.); (Y.Y.); (G.L.)
- Correspondence: (G.H.); (X.G.)
| |
Collapse
|
18
|
Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, Diao L, Liu H, Li X, Sun X, Abbas G, Li G. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Front Pharmacol 2019; 10:1272. [PMID: 31736754 PMCID: PMC6830131 DOI: 10.3389/fphar.2019.01272] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Hypericum perforatum L., also known as Saint John’s Wort, has been well studied for its chemical composition and pharmacological activity. In this study, the antiviral activities of H. perforatum on infectious bronchitis virus (IBV) were evaluated in vitro and in vivo for the first time. The results of in vitro experiments confirmed that the antiviral component of H. perforatum was ethyl acetate extraction section (HPE), and results showed that treatment with HPE significantly reduced the relative messenger ribonucleic acid (mRNA) expression and virus titer of IBV, and reduced positive green immunofluorescence signal of IBV in chicken embryo kidney (CEK) cells. HPE treatment at doses of 480–120 mg/kg for 5 days, reduced IBV induced injury in the trachea and kidney, moreover, reduced the mRNA expression level of IBV in the trachea and kidney in vivo. The mRNA expression levels of IL-6, tumor necrosis factor alpha (TNF-α), and nuclear factor kappa beta (NF-κB) significantly decreased, but melanoma differentiation-associated protein 5 (MDA5), mitochondrial antiviral signaling gene, interferon alpha (IFN-α), and interferon beta (IFN-β) mRNA levels significantly increased in vitro and in vivo. Our findings demonstrated that HPE had significant anti-IBV effects in vitro and in vivo, respectively. In addition, it is possible owing to up-regulate mRNA expression of type I interferon through the MDA5 signaling pathway and down-regulate mRNA expression of IL-6 and TNF-α via the NF-κB signaling pathway. Moreover, the mainly active compositions of HPE analyzed by high-performance liquid chromatography/electrospray ionization–mass spectroscopy (ESI-MS) are hyperoside, quercitrin, quercetin, pseudohypericin, and hypericin, and a combination of these compounds could mediate the antiviral activities. This might accelerate our understanding of the antiviral effect of H. perforatum and provide new insights into the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Huijie Chen
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruili Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Haixin Liu
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xunliang Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ghulam Abbas
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Virus-Like Particles-Based Mucosal Nanovaccines. NANOVACCINES 2019. [PMCID: PMC7120988 DOI: 10.1007/978-3-030-31668-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.
Collapse
|