1
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
2
|
Ogwuche J, Chang CA, Ige O, Sagay AS, Chaplin B, Kahansim ML, Paul M, Elujoba M, Imade G, Kweashi G, Dai YC, Hsieh SC, Wang WK, Hamel DJ, Kanki PJ. Arbovirus surveillance in pregnant women in north-central Nigeria, 2019-2022. J Clin Virol 2023; 169:105616. [PMID: 37944259 PMCID: PMC10841754 DOI: 10.1016/j.jcv.2023.105616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The adverse impact of Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) virus infection in pregnancy has been recognized in Latin America and Asia but is not well studied in Africa. Although originally discovered in sub-Saharan Africa the non-specific clinical presentation of arbovirus infection may have hampered our detection of adverse clinical outcomes and outbreak. OBJECTIVE This prospective study of arbovirus infection in pregnant women in north-central Nigeria sought to characterize the prevalence of acute arbovirus infection and determine the impact on pregnancy and infant outcomes. METHODS In Nigeria, we screened 1006 pregnant women for ZIKV, DENV and CHIKV IgM/IgG by rapid test (2019-2022). Women with acute infection were recruited for prospective study and infants were examined for any abnormalities from delivery through six months. A subset of rapid test-reactive samples were confirmed using virus-specific ELISAs and neutralization assays. RESULTS The prevalence of acute infection (IgM+) was 3.8 %, 9.9 % and 11.8 % for ZIKV, DENV and CHIKV, respectively; co-infections represented 24.5 % of all infections. The prevalence in asymptomatic women was twice the level of symptomatic infection. We found a significant association between acute maternal ZIKV/DENV/CHIKV infection and any gross abnormal birth outcome (p = 0.014). CONCLUSIONS Over three rainy seasons, regular acute infection with ZIKV, DENV, and CHIKV was observed with significantly higher rates in pregnant women without symptoms. The potential association arbovirus infection with abnormal birth outcome warrants further prospective study to ascertain the clinical significance of these endemic arboviruses in Africa.
Collapse
Affiliation(s)
| | - Charlotte Ajeong Chang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olukemi Ige
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Atiene S Sagay
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael Paul
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Godwin Imade
- Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | | | - Yu-Ching Dai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Szu-Chia Hsieh
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Donald J Hamel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Phyllis J Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
He Y, Pan Z, Liu Y, Jiang L, Peng H, Zhao P, Qi Z, Liu Y, Tang H. Identification of tyrphostin AG879 and A9 inhibiting replication of chikungunya virus by screening of a kinase inhibitor library. Virology 2023; 588:109900. [PMID: 37832343 DOI: 10.1016/j.virol.2023.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Chikungunya virus (CHIKV) is a globally public health threat. There are currently no medications available to treat CHIKV infection. High-throughput screening of 419 kinase inhibitors was performed based on the cytopathic effect method, and six kinase inhibitors with reduced cytopathic effects, including tyrphostin AG879 (AG879), tyrphostin 9 (A9), sorafenib, sorafenib tosylate, regorafenib, and TAK-632, were identified. The anti-CHIKV activities of two receptor tyrosine kinase inhibitors, AG879 and A9, that have not been previously reported, were selected for further evaluation. The results indicated that 50% cytotoxic concentration (CC50) of AG879 and A9 in Vero cells were greater than 30 μM and 6.50 μM, respectively and 50% effective concentration (EC50) were 0.84 μM and 0.36 μM, respectively. The time-of-addition and time-of-removal assays illustrated that both AG879 and A9 function in the middle stage of CHIKV life cycle. Further, AG879 and A9 do not affect viral attachment; however, they inhibit viral RNA replication, and exhibit antiviral activity against CHIKV Eastern/Central/South African and Asian strains, Ross River virus and Sindbis virus in vitro.
Collapse
Affiliation(s)
- Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Liangliang Jiang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China
| | - Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China.
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Taylor M, Rayner JO. Immune Response to Chikungunya Virus: Sex as a Biological Variable and Implications for Natural Delivery via the Mosquito. Viruses 2023; 15:1869. [PMID: 37766276 PMCID: PMC10538149 DOI: 10.3390/v15091869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus with significant public health implications around the world. Climate change, as well as rapid urbanization, threatens to expand the population range of Aedes vector mosquitoes globally, increasing CHIKV cases worldwide in return. Epidemiological data suggests a sex-dependent response to CHIKV infection. In this review, we draw attention to the importance of studying sex as a biological variable by introducing epidemiological studies from previous CHIKV outbreaks. While the female sex appears to be a risk factor for chronic CHIKV disease, the male sex has recently been suggested as a risk factor for CHIKV-associated death; however, the underlying mechanisms for this phenotype are unknown. Additionally, we emphasize the importance of including mosquito salivary components when studying the immune response to CHIKV. As with other vector-transmitted pathogens, CHIKV has evolved to use these salivary components to replicate more extensively in mammalian hosts; however, the response to natural transmission of CHIKV has not been fully elucidated.
Collapse
Affiliation(s)
| | - Jonathan O. Rayner
- Department of Microbiology & Immunology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| |
Collapse
|
5
|
Ogwuche J, Chang CA, Ige O, Sagay AS, Chaplin B, Kahansim ML, Paul M, Elujoba M, Imade G, Kweashi G, Dai YC, Hsieh SC, Wang WK, Hamel DJ, Kanki PJ. Arbovirus surveillance in pregnant women in north-central Nigeria, 2019-2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293671. [PMID: 37609234 PMCID: PMC10441490 DOI: 10.1101/2023.08.04.23293671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The adverse impact of Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) virus infection in pregnancy has been recognized in Latin America and Asia but is not well studied in Africa. In Nigeria, we screened 1006 pregnant women for ZIKV, DENV and CHIKV IgM/IgG by rapid test (2019-2022). Women with acute infection were recruited for prospective study and infants were examined for any abnormalities from delivery through six months. A subset of rapid test-reactive samples were confirmed using virus-specific ELISAs and neutralization assays. Prevalence of acute infection (IgM+) was 3.8%, 9.9% and 11.8% for ZIKV, DENV and CHIKV, respectively; co-infections represented 24.5% of all infections. Prevalence in asymptomatic women was twice the level of symptomatic infection. We found a significant association between acute maternal ZIKV/DENV/CHIKV infection and any gross abnormal birth outcome (p=0.014). Further prospective studies will contribute to our understanding of the clinical significance of these endemic arboviruses in Africa.
Collapse
|
6
|
Millsapps EM, Underwood EC, Barr KL. Development and Application of Treatment for Chikungunya Fever. Res Rep Trop Med 2022; 13:55-66. [PMID: 36561535 PMCID: PMC9767026 DOI: 10.2147/rrtm.s370046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and application of treatment for Chikungunya fever (CHIKF) remains complicated as there is no current standard treatment and many barriers to research exist. Chikungunya virus (CHIKV) causes serious global health implications due to its socioeconomic impact and high morbidity rates. In research, treatment through natural and pharmaceutical techniques is being evaluated for their efficacy and effectiveness. Natural treatment options, such as homeopathy and physiotherapy, give patients a variety of options for how to best manage acute and chronic symptoms. Some of the most used pharmaceutical therapies for CHIKV include non-steroidal anti-inflammatory drugs (NSAIDS), methotrexate (MTX), chloroquine, and ribavirin. Currently, there is no commercially available vaccine for chikungunya, but vaccine development is crucial for this virus. Potential treatments need further research until they can become a standard part of treatment. The barriers to research for this complicated virus create challenges in the efficacy and equitability of its research. The rising need for increased research to fully understand chikungunya in order to develop more effective treatment options is vital in protecting endemic populations globally.
Collapse
Affiliation(s)
- Erin M Millsapps
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Emma C Underwood
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Kelli L Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA,Correspondence: Kelli L Barr, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd. Suite 304, Tampa, FL, 33612, USA, Tel +1 813 974 4480, Fax +1 813 974 4962, Email
| |
Collapse
|
7
|
Traverse EM, Millsapps EM, Underwood EC, Hopkins HK, Young M, Barr KL. Chikungunya Immunopathology as It Presents in Different Organ Systems. Viruses 2022; 14:v14081786. [PMID: 36016408 PMCID: PMC9414582 DOI: 10.3390/v14081786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently an urgent public health problem as high morbidity from the virus leaves populations with negative physical, social, and economic impacts. CHIKV has the potential to affect every organ of an individual, leaving patients with lifelong impairments which negatively affect their quality of life. In this review, we show the importance of CHIKV in research and public health by demonstrating the immunopathology of CHIKV as it presents in different organ systems. Papers used in this review were found on PubMed, using “chikungunya and [relevant organ system]”. There is a significant inflammatory response during CHIKV infection which affects several organ systems, such as the brain, heart, lungs, kidneys, skin, and joints, and the immune response to CHIKV in each organ system is unique. Whilst there is clinical evidence to suggest that serious complications can occur, there is ultimately a lack of understanding of how CHIKV can affect different organ systems. It is important for clinicians to understand the risks to their patients.
Collapse
|
8
|
Hopkins HK, Traverse EM, Barr KL. Chikungunya Encephalitis: an Inconsistently Reported Headache and Cause of Death in Patients with Pre-Existing Conditions. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractChikungunya virus (CHIKV) is an alphavirus of the family Togaviridae with outbreaks occurring across Africa, Asia, parts of Europe, and South and Central America. There are three main lineages of CHIKV, including the West African lineage, the East Central South African (ECSA) lineage, and the Asian lineage. While CHIKV infection usually results in a self-limited febrile illness, there have been reports of concerning neurological manifestations, including encephalitis. Herein we discuss findings of over 700 cases of CHIKV encephalitis and risk factors for death. Additionally, we examined the genotypes of CHIKV associated with encephalitis and found that both the Asian and ECSA lineages were responsible for encephalitis but not the West African lineage. Protein analysis of consensus sequences of CHIKV strains associated with encephalitis identified mutations in the nsP1, nsP2, and nsP3 proteins. Reports and manuscripts of CHIKV encephalitis were inconsistent in reporting viral, demographic, and clinical features which complicated the delineation of risk factors associated with the disease and viral evolution. As climate change contributes to the range expansion of natural vectors, it is important for researchers and clinicians to consistently report patient and viral data to facilitate research and countermeasures for the ecology and epidemiology of CHIKV due to the lack of a targeted treatment or vaccine.
Collapse
|
9
|
Clinicopathologic features among different viral epidemic outbreaks involving the skin. Clin Dermatol 2022; 40:573-585. [PMID: 36509508 PMCID: PMC8219845 DOI: 10.1016/j.clindermatol.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 pandemic has exceeded any epidemiologic prevision, but increasing information suggests some analogies with the major viral outbreaks in the last century, and a general warning has been issued on the possibility that coinfections can make the differential diagnosis and treatment difficult, especially in tropical countries. Some reports have noted that the presence of high dengue antibodies can give a false-negative result when testing for severe acute respiratory syndrome coronavirus 2. Mucocutaneous manifestations are very frequent, with an apparent overlap among different pathogens. However, strong clinicopathologic correlation might provide some clues to address differentials. Waiting for laboratory and instrumental results, the timing and distribution of skin lesions is often pathognomonic. Histopathologic findings characterize certain reaction patterns and provide insights on pathogenetic mechanisms. Unfortunately, skin assessment, especially invasive examinations such as biopsy, takes a back seat in severely ill patients. A literature retrieval was performed to collect information from other epidemics to counteract what has become the most frightening disease of our time.
Collapse
Key Words
- (covid-19), coronavirus 2019 disease
- (who), world health organization
- (sars), severe acute respiratory syndrome coronavirus
- (sars-cov-2), novel coronavirus
- (mers), middle east respiratory syndrome
- (r0), basic reproductive number
- (mis), multisystem inflammatory syndrome
- (iga), immunoglobulin a
- (ace-2), angiotensin‐converting enzyme 2
- (dengv), dengue virus
- (ttp), thrombotic thrombocytopenic purpura
- (vwf), von willebrand factor
- (cd1a), cluster of diffentiation 1-a
- (rt-pcr), reverse transcription polymerase chain reaction
- (chikv), chikungunya virus
- (e1, e2), envelope glycoprotein
- (ifn-i), interferon-type-i
- (zikv), zika virus
- (ebov), ebola virus
Collapse
|
10
|
Gomes PD, Carvalho RFSM, Massini MM, Garzon RH, Schiavo PL, Fernandes RCDSC, Louvain de Souza T. High prevalence of arthralgia among infants with Chikungunya disease during the 2019 outbreak in northern region of the state of Rio de Janeiro. Front Pediatr 2022; 10:944818. [PMID: 36340716 PMCID: PMC9627548 DOI: 10.3389/fped.2022.944818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION In a low-income setting with simultaneous presence of Dengue virus, Zika virus, and Chikungunya virus (CHIKV) in the same region, the difficulty of establishing a clinical diagnosis when the molecular test is not a possibility. Thus, it is important to identify signs and symptoms of Chikungunya that can be used to differentiate it from other arboviruses in children. METHODS This is a cross-sectional study, which was developed in Rio de Janeiro State, Brazil, with the analysis of pediatric medical records regarding arboviruses. Considering that the population had already been exposed to Dengue and Zika viruses and were experiencing the first notification of the CHIKV. The ethics committee approved this research, and all those legally responsible for the children signed the consent form. RESULTS In total, 159 children were seen of which 98 were suspected CHIKV cases, and 51 had their diagnosis confirmed with reagent IgM/IgG for CHIKV. The symptoms that the pediatric population with CHIKV presented most often were fever (90.2%), arthralgia (76.5%), and exanthema (62.7%) in both suspected and confirmed cases of Chikungunya. Thus, CHIKV in those children presents a clinical profile similar to those found in other studies referring to adults. Additionally, only arthralgia and a high aspartate transaminase were related to the positivity of serology for Chikungunya. CONCLUSIONS This study describes the signs and symptoms of CHIKV exhibited in the pediatric population with a mild and moderate presentation similar to the findings in the adult during an epidemic experienced in a population vulnerable to CHIKV.
Collapse
Affiliation(s)
- Patrícia Damião Gomes
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Milena Moulin Massini
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Rafael Hauaji Garzon
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Regina Célia de Souza Campos Fernandes
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Campos dos Goytacazes, Rio de Janeiro, Brazil.,Molecular Identification and Diagnosis Unit, Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thaís Louvain de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Sreekanth R, Venugopal L, Arunkrishnan B, Chaturvedi S, Sundaram S. Neonatal chikungunya encephalitis. Trop Doct 2021; 52:199-201. [PMID: 34939861 DOI: 10.1177/00494755211063268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chikungunya is a tropical viral disease and can present in the new born with perinatal transmission. Presentation usually mimics sepsis and high index of suspicion is needed for diagnosis specially at times of outbreak. Characteristic skin rash and perioral blotchy hyperpigmentation can point to diagnosis along with laboratory confirmation with RTPCR.
Collapse
Affiliation(s)
- R Sreekanth
- Resident Department of Neonatology, 80205Dr Mehta Multispeciality Hospital Chennai, Chennai, India
| | - Lakshmi Venugopal
- Head of the Department Neonatology, Dr Mehta Multispeciality Hospital Chennai, Chennai, India
| | - B Arunkrishnan
- Consultant Neonatology, Dr Mehta Multispeciality Hospital Chennai, Chennai, India
| | - Somya Chaturvedi
- Resident Department of Neonatology, 80205Dr Mehta Multispeciality Hospital Chennai, Chennai, India
| | - Shanmugha Sundaram
- Consultant Neonatology, Dr Mehta Multispeciality Hospital Chennai, Chennai, India
| |
Collapse
|
12
|
Chaudhary S, Jain J, Kumar R, Shrinet J, Weaver SC, Auguste AJ, Sunil S. Chikungunya virus molecular evolution in India since its re-emergence in 2005. Virus Evol 2021; 7:veab074. [PMID: 34754512 PMCID: PMC8570154 DOI: 10.1093/ve/veab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV), an alphavirus of the Togaviridae family, is among the most medically significant mosquito-borne viruses, capable of causing major epidemics of febrile disease and severe, chronic arthritis. Identifying viral mutations is crucial for understanding virus evolution and evaluating those genetic determinants that directly impact pathogenesis and transmissibility. The present study was undertaken to expand on past CHIKV evolutionary studies through robust genome-scale phylogenetic analysis to better understand CHIKV genetic diversity and evolutionary dynamics since its reintroduction into India in 2005. We sequenced the complete genomes of fifty clinical isolates collected between 2010 and 2016 from two geographic locations, Delhi and Mumbai. We then analysed them along with 753 genomes available on the Virus Pathogen Database and Analysis Resource sampled over fifteen years (2005-20) from a range of locations across the globe and identified novel genetic variants present in samples from this study. Our analyses show evidence of frequent reintroduction of the virus into India and that the most recent CHIKV outbreak shares a common ancestor as recently as 2006.
Collapse
Affiliation(s)
| | - Jaspreet Jain
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Jatin Shrinet
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
14
|
Atzori L, Ferreli C, Mateeva V, Vassileva S, Rongioletti F. Clinicopathologic features between different viral epidemic outbreaks involving the skin. Clin Dermatol 2021; 39:405-417. [PMID: 34517998 PMCID: PMC8071581 DOI: 10.1016/j.clindermatol.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current coronavirus disease 2019 pandemic has exceeded any epidemiologic prevision, but increasing information suggests some analogies with the major viral outbreaks of the last century. A general warning has been issued on the possibility that coinfections can make differential diagnosis and treatment difficult, especially in tropical countries. Some reports have pointed out that the presence of high Dengue antibodies can give a false-negative result for severe acute respiratory syndrome coronavirus 2. Mucocutaneous manifestations are very frequent, with an apparent overlap among different pathogens. A strong clinicopathologic correlation, however, may provide some clues to address the differential. Waiting for laboratory and instrumental results, the timing and distribution of skin lesions is often pathognomonic. Histopathologic findings characterize certain reaction patterns and provide insights on pathogenetic mechanisms. Unfortunately, skin assessments, especially invasive exams such as biopsy, are less important in severely ill patients. A literature review was performed to collect information from other epidemics to counteract what has become the most frightening disease of our time.
Collapse
Affiliation(s)
- Laura Atzori
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Caterina Ferreli
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Valeria Mateeva
- Department of Dermatology, Sofia University of Medicine, Sofia, Bulgaria
| | - Snejina Vassileva
- Department of Dermatology, Sofia University of Medicine, Sofia, Bulgaria
| | - Franco Rongioletti
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Vita-SaluteS.Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
16
|
Traverse EM, Hopkins HK, Vaidhyanathan V, Barr KL. Cardiomyopathy and Death Following Chikungunya Infection: An Increasingly Common Outcome. Trop Med Infect Dis 2021; 6:108. [PMID: 34206332 PMCID: PMC8293388 DOI: 10.3390/tropicalmed6030108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is vectored by Aedes aegypti and Aedes albopictus mosquitoes and is found throughout tropical and sub-tropical regions. While most infections cause mild symptoms such as fever and arthralgia, there have been cases in which cardiac involvement has been reported. In adults, case reports include symptoms ranging from tachycardia and arrythmia, to myocarditis and cardiac arrest. In children, case reports describe symptoms such as arrythmia, myocarditis, and heart failure. Case reports of perinatal and neonatal CHIKV infections have also described cardiovascular compromise, including myocardial hypertrophy, ventricular dysfunction, myocarditis, and death. Myocarditis refers to inflammation of the heart tissue, which can be caused by viral infection, thus becoming viral myocarditis. Since viral myocarditis is linked as a causative factor of other cardiomyopathies, including dilated cardiomyopathy, in which the heart muscle weakens and fails to pump blood properly, the connection between CHIKV and the heart is concerning. We searched Pubmed, Embase, LILACS, and Google Scholar to identify case reports of CHIKV infections where cardiac symptoms were reported. We utilized NCBI Virus and NCBI Nucleotide to explore the lineage/evolution of strains associated with these outbreaks. Statistical analysis was performed to identify which clinical features were associated with death. Phylogenetic analysis determined that CHIKV infections with cardiac symptoms are associated with the Asian, the East Central South African, and the Indian Ocean lineages. Of patients admitted to hospital, death rates ranged from 26-48%. Myocarditis, hypertension, pre-existing conditions, and the development of heart failure were significantly correlated with death. As such, clinicians should be aware in their treatment and follow-up of patients.
Collapse
Affiliation(s)
- Elizabeth M. Traverse
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.M.T.); (H.K.H.)
| | - Hannah K. Hopkins
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.M.T.); (H.K.H.)
| | | | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.M.T.); (H.K.H.)
| |
Collapse
|
17
|
de St Maurice A, Ervin E, Chu A. Ebola, Dengue, Chikungunya, and Zika Infections in Neonates and Infants. Clin Perinatol 2021; 48:311-329. [PMID: 34030816 DOI: 10.1016/j.clp.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Emerging infectious diseases, including Ebola, chikungunya, Zika, and dengue, may have significant impacts on maternal-fetal dyads and neonatal outcomes. Pregnant women infected with Ebola demonstrate high mortality and very low evidence of neonatal survival. Maternal chikungunya infection can result in high rates of perinatal transmission, and infected neonates demonstrate variable disease severity. Dengue can be transmitted to neonates via vertical transmission or perinatal transmission. Zika is characterized by mild disease in pregnant women, but congenital infection can be severe. Treatment largely is supportive for these diseases, and vaccine development remains under way, with promising recent advances, notably for Ebola.
Collapse
Affiliation(s)
- Annabelle de St Maurice
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Los Angeles, 924 Westwood Boulevard, Suite 900, CA 90095, USA.
| | - Elizabeth Ervin
- Post-baccalaureate Premedical Program, University of Michigan, Office of Graduate and Postdoctoral Studies, 2960 Taubman Health Science Library, 1135 Catherine Street, Ann Arbor, MI 48109, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Ginige S, Flower R, Viennet E. Neonatal Outcomes From Arboviruses in the Perinatal Period: A State-of-the-Art Review. Pediatrics 2021; 147:peds.2020-009720. [PMID: 33737375 DOI: 10.1542/peds.2020-009720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Since the 2016 Zika outbreak and the understanding of the teratogenic effect of this infection, there has been a newfound interest in arbovirus infections and their effects on pregnancy, resulting in numerous publications in the last 5 years. However, limited literature focuses on arbovirus infection in different stages of pregnancy and their effect on the neonate. There is currently no consensus management of perinatal acquisition of arboviruses, and current evidence is largely anecdotal observational reports. Teratogens can have different effects on the developing fetus depending on the time of infection, so infections during pregnancy should be analyzed by trimester. A better understanding of arbovirus infection in the perinatal period is required to assist obstetric, neonatal, and pediatric clinicians in making decisions about the management of mother and neonate. Our objective was to assess the evidence of adverse neonatal outcomes for several arboviral infections when contracted during the perinatal period to guide clinicians in managing these patients. There are 8 arboviruses for which neonatal outcomes from maternal acquisition in the perinatal period have been reported, with the most data for dengue and Chikungunya virus infections. The evidence reviewed in this article supports the adoption of preventive strategies to avoid ticks and mosquitoes close to the date of delivery. For the other arbovirus infections, further community-based cohort studies during outbreaks are required to evaluate whether these infections have a similar teratogenic impact.
Collapse
|
19
|
Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020; 17:233. [PMID: 32778106 PMCID: PMC7418199 DOI: 10.1186/s12974-020-01904-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Patrick Eldin
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Laurence Briant
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Annie Lannuzel
- Neurology Unit, INSERM CIC 1424, Guadeloupe University Hospital, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Sorbonne University Medical School, Paris, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - André Cabié
- INSERM CIC 1424, Infectious Disease and Tropical Medicine Unit, Martinique University Hospital, Université des Antilles EA4537, Martinique, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.
| |
Collapse
|
20
|
Abstract
Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus.Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV.Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| |
Collapse
|
21
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
22
|
Abstract
OBJECTIVES To present the currently available evidence on transmission, clinical, diagnostic methods, treatment, and prevention methods of major arboviruses that occur in childhood. SOURCE OF DATA Non-systematic review carried out in MEDLINE (PubMed), LILACS (VHL), Scopus, Web of Science, Cochrane, CAPES Portal, and Google Scholar databases for the past five years using the search terms arboviruses, dengue, chikungunya, Zika, Mayaro, and West Nile fever, as well as child, newborn, and adolescent. SYNTHESIS OF DATA The main characteristic of arboviruses is the fact that part of their replication cycle occurs inside insect vectors, thus being classically transmitted to humans through the bite of mosquitoes (hematophagous arthropods), although non-vector transmission of these viruses is also possible in specific situations. These diseases remain a major public health challenge, due to the lack of specific antiviral treatment, the co-circulation of different arboviruses in endemic/epidemic regions, the lack of effective and safe immunizations for the vast majority of these viruses, and the great difficulty in vector control, especially in large urban centers. CONCLUSIONS Children are especially vulnerable to this group of diseases due to characteristics that facilitate the development of the most severe forms. More detailed knowledge of this group of diseases allows the pediatrician to diagnose them earlier, implement the correct treatment, monitor warning signs for the most severe forms, and establish effective preventive measures.
Collapse
|
23
|
Antibodies for Venezuelan Equine Encephalitis Virus Protect Embryoid Bodies from Chikungunya Virus. Viruses 2020; 12:v12030262. [PMID: 32120905 PMCID: PMC7150962 DOI: 10.3390/v12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that causes febrile illness punctuated by severe polyarthralgia. After the emergence of CHIKV in the Western Hemisphere, multiple reports of congenital infections were published that documented neurological complications, cardiac defects, respiratory distress, and miscarriage. The Western Hemisphere is endemic to several alphaviruses, and whether antigenic cross-reactivity can impact the course of infection has not been explored. Recent advances in biomedical engineering have produced cell co-culture models that replicate the cellular interface at the maternal fetal axis. We employed a trans-well assay to determine if cross-reactive antibodies affected the movement and replication of CHIKV across placental cells and into an embryoid body. The data showed that antibodies to Venezuelan equine encephalitis virus significantly reduced CHIKV viral load in embryoid bodies. The data highlighted the fact that viral pathogenesis can be cell-specific and that exploiting antigenic cross-reactivity could be an avenue for reducing the impact of congenital CHIKV infections.
Collapse
|
24
|
Corrêa DG, Freddi TAL, Werner H, Lopes FPPL, Moreira MEL, de Almeida Di Maio Ferreira FCP, de Andrade Lopes JM, Rueda-Lopes FC, da Cruz LCH. Brain MR Imaging of Patients with Perinatal Chikungunya Virus Infection. AJNR Am J Neuroradiol 2019; 41:174-177. [PMID: 31806601 DOI: 10.3174/ajnr.a6339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 11/07/2022]
Abstract
Since 2005, it has been known that mother-to-child transmission of the chikungunya virus is possible. Transmission generally occurs in the perinatal period. In the present study, we describe the brain lesions seen on MR imaging of 6 cases of perinatal chikungunya infection. Patients who underwent brain MR imaging in the acute phase presented with areas of restricted diffusion in the white matter, suggesting a perivascular distribution, whereas those in the subacute/late phase showed cystic lesions, also with a perivascular distribution, with or without brain atrophy. One patient also presented with scattered hemorrhages in the frontal and parietal lobes. Important differential diagnoses include rotavirus, Parechovirus, herpes simplex infection, and hypoxic-ischemic encephalopathy, depending on the disease phase.
Collapse
Affiliation(s)
- D G Corrêa
- From the Clínica de Diagnóstico por Imagem/Diagnósticos da América (D.G.C., H.W., F.P.P.L.L., F.C.R.-L., L.C.H.d.C.)
| | - T A L Freddi
- Rio de Janeiro, RJ, Brazil; Department of Radiology (T.A.L.F.), Hospital do Coração, São Paulo, SP, Brazil
| | - H Werner
- From the Clínica de Diagnóstico por Imagem/Diagnósticos da América (D.G.C., H.W., F.P.P.L.L., F.C.R.-L., L.C.H.d.C.)
| | - F P P L Lopes
- From the Clínica de Diagnóstico por Imagem/Diagnósticos da América (D.G.C., H.W., F.P.P.L.L., F.C.R.-L., L.C.H.d.C.)
| | - M E L Moreira
- Clínica Perinatal (M.E.L.M., F.C.P.d.A.D.M.F., J.M.d.A.L.), Rio de Janeiro, RJ, Brazil
| | | | - J M de Andrade Lopes
- Clínica Perinatal (M.E.L.M., F.C.P.d.A.D.M.F., J.M.d.A.L.), Rio de Janeiro, RJ, Brazil
| | - F C Rueda-Lopes
- From the Clínica de Diagnóstico por Imagem/Diagnósticos da América (D.G.C., H.W., F.P.P.L.L., F.C.R.-L., L.C.H.d.C.)
| | - L C H da Cruz
- From the Clínica de Diagnóstico por Imagem/Diagnósticos da América (D.G.C., H.W., F.P.P.L.L., F.C.R.-L., L.C.H.d.C.)
| |
Collapse
|
25
|
Inziani M, Adungo F, Awando J, Kihoro R, Inoue S, Morita K, Obimbo E, Onyango F, Mwau M. Seroprevalence of yellow fever, dengue, West Nile and chikungunya viruses in children in Teso South Sub-County, Western Kenya. Int J Infect Dis 2019; 91:104-110. [PMID: 31712089 DOI: 10.1016/j.ijid.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Arboviruses often cause widespread morbidity in children in endemic regions. Data on the burden of arboviruses in Kenyan children are limited. OBJECTIVES This study was performed to determine the seroprevalence of yellow fever (YFV), dengue (DENV), West Nile (WNV), and chikungunya (CHIKV) viruses among children 1-12 years of age at two health facilities in Teso South Sub-County in Western Kenya. METHODS In a hospital-based cross-sectional survey, a questionnaire was used to collect socio-demographic information. Serum drawn from the children was tested for IgA/IgM/IgG serocomplex antibodies to selected arboviruses using indirect ELISA and plaque reduction neutralization tests. RESULTS A total of 182 (27.7%) of the 656 participants tested were positive for any arbovirus antibody. Of these, 4.4% (29/656) tested positive for YFV, 9.6% (62/649) for WNV, 5.6% (36/649) for CHIKV, 1.4% (5/368) for DENV1, 9% (59/656) for DENV2, and 19.7% (40/203) for DENV3. Neutralizing antibodies to CHIKV were found in 77.8% (42/54) of participants, to YFV in 15.8% (3/19), to DENV2 in 58% (29/50), and to WNV in 8% (1/55). Sex, age, urban residence, schooling, and lack of vaccination were associated with arbovirus exposure. CONCLUSIONS This study confirmed that children under 12 years of age in Teso South Sub-County are exposed to ongoing arbovirus infections early in life.
Collapse
Affiliation(s)
- Mary Inziani
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Ferdinard Adungo
- Centre for Infectious and Parasitic Diseases Control Research (CIPDCR), Kenya Medical Research Institute, Busia, Kenya
| | - Janet Awando
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Richelle Kihoro
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Shingo Inoue
- Nagasaki University Africa Research Station, Nairobi, Kenya
| | - Kouichi Morita
- Nagasaki University Institute of Tropical Medicine, Nagasaki, Japan
| | - Elizabeth Obimbo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Francis Onyango
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Matilu Mwau
- Centre for Infectious and Parasitic Diseases Control Research (CIPDCR), Kenya Medical Research Institute, Busia, Kenya
| |
Collapse
|
26
|
Shi J, Perryman JM, Yang X, Liu X, Musser DM, Boehr AK, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry 2019; 58:3735-3743. [PMID: 31424194 DOI: 10.1021/acs.biochem.9b00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conserved structural motif D is an important determinant of the speed and fidelity of viral RNA-dependent RNA polymerases (RdRps). Structural and computational studies have suggested that conformational changes in the motif-D loop that help to reposition the catalytic lysine represent critical steps in nucleotide selection and incorporation. Conformations of the motif-D loop in the poliovirus RdRp are likely controlled in part by noncovalent interactions involving the motif-D residue Glu364. This residue swivels between making interactions with Lys228 and Asn370 to stabilize the open and closed loop conformations, respectively. We show here that we can rationally control the motif-D loop conformation by breaking these interactions. The K228A variant favors a more active closed conformation, leading to increased nucleotide incorporation rates and decreased nucleotide selectivity, and the N370A variant favors a less active open conformation, leading to decreased nucleotide incorporation rates and increased nucleotide selectivity. Similar competing interactions likely control nucleotide incorporation rates and fidelity in other viral RdRps. Rational engineering of these interactions may be important in the generation of live, attenuated vaccine strains, considering the established relationships between RdRp function and viral pathogenesis.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jacob M Perryman
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xiaorong Yang
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinran Liu
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Derek M Musser
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Alyson K Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David D Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
27
|
Wang P, Zhang R. Chikungunya Virus and (Re-) Emerging Alphaviruses. Viruses 2019; 11:v11090779. [PMID: 31450552 PMCID: PMC6784149 DOI: 10.3390/v11090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|