1
|
Li L, Liu Z, Liang R, Yang M, Yan Y, Jiao Y, Jiao Z, Hu X, Li M, Shen Z, Peng G. Novel mutation N588 residue in the NS1 protein of feline parvovirus greatly augments viral replication. J Virol 2024; 98:e0009324. [PMID: 38591899 PMCID: PMC11092363 DOI: 10.1128/jvi.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Su X, Zhou H, Xu F, Zhang J, Xiao B, Qi Q, Lin L, Yang B. Chaperonin TRiC/CCT subunit CCT7 is involved in the replication of canine parvovirus in F81 cells. Front Microbiol 2024; 15:1346894. [PMID: 38384266 PMCID: PMC10879588 DOI: 10.3389/fmicb.2024.1346894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Canine parvovirus (CPV) is one of the most common lethal viruses in canines. The virus disease is prevalent throughout the year, with high morbidity and mortality rate, causing serious harm to dogs and the dog industry. Previously, yeast two hybrid method was used to screen the protein chaperonin containing TCP-1 (CCT7) that interacts with VP2. However, the mechanism of interactions between CCT7 and VP2 on CPV replication remains unclear. In this study, we first verified the interaction between CCT7 and viral VP2 proteins using yeast one-to-one experiment and co-immunoprecipitation (CoIP) experiment. Laser confocal microscopy observation showed that CCT7 and VP2 were able to co-localize and were mostly localized in the cytoplasm. In addition, the study of VP2 truncated mutant found that the interaction region of VP2 with CCT7 was located between amino acids 231 and 320. Cycloheximide (CHX) chase experiments showed that CCT7 can improve the stability of VP2 protein. After further regulation of CCT7 expression in F81 cells, it was found that the expression level of VP2 protein was significantly reduced after knocking down CCT7 expression by RNA interference (RNAi) or HSF1A inhibitor, and increased after overexpressing host CCT7. The study reveals the role of VP2 interacting protein CCT7 in the replication process of CPV, which could provide a potential target for the prevention and control of CPV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Dai Y, Li Y, Hu X, Jiang N, Liu W, Meng Y, Zhou Y, Xu C, Xue M, Fan Y. Nonstructural protein NS17 of grass carp reovirus Honghu strain promotes virus infection by mediating cell-cell fusion and apoptosis. Virus Res 2023; 334:199150. [PMID: 37302658 PMCID: PMC10410512 DOI: 10.1016/j.virusres.2023.199150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Xi Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Melatonin Supplementation during the Late Gestational Stage Enhances Reproductive Performance of Sows by Regulating Fluid Shear Stress and Improving Placental Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12030688. [PMID: 36978937 PMCID: PMC10045541 DOI: 10.3390/antiox12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, the effects of daily melatonin supplementation (2 mg/kg) at the late gestational stage on the reproductive performance of the sows have been investigated. This treatment potentially increased the litter size and birth survival rate and significantly increased the birth weight as well as the weaning weight and survival rate of piglets compared to the controls. The mechanistic studies have found that these beneficial effects of melatonin are not mediated by the alterations of reproductive hormones of estrogen and progesterone, nor did the glucose and lipid metabolisms, but they were the results of the reduced oxidative stress in placenta associated with melatonin supplementation. Indeed, the melatonergic system, including mRNAs and proteins of AANAT, MTNR1A and MTNR1B, has been identified in the placenta of the sows. The RNA sequencing of placental tissue and KEGG analysis showed that melatonin activated the placental tissue fluid shear stress pathway to stimulate the Nrf2 signaling pathway, which upregulated its several downstream antioxidant genes, including MGST1, GSTM3 and GSTA4, therefore, suppressing the placental oxidative stress. All these actions may be mediated by the melatonin receptor of MTNR1B.
Collapse
|
6
|
Du Q, Zhang X, Xu N, Ma M, Miao B, Huang Y, Tong D. Chaperonin CCT5 binding with porcine parvovirus NS1 promotes the interaction of NS1 and COPƐ to facilitate viral replication. Vet Microbiol 2022; 274:109574. [PMID: 36126504 DOI: 10.1016/j.vetmic.2022.109574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Porcine parvovirus (PPV) is an important pathogen causing reproductive disorders in first pregnant sows. The non-structure protein NS1 of PPV is a multifunctional protein playing a key role in viral replication. Chaperonin-containing T-complex polypeptide complex (CCT), containing CCT1-CCT8 subunits, belongs to the type II chaperones that interact with proteins to help in folding and maintaining. In this study, CCT5, for the first time, was found to be one of the host interacting proteins of PPV NS1, and CCT5 was directly bound with NS1. Interference of CCT5 expression by specific siRNA and knockout of CCT5 expression by CRISPR/Cas9 suppressed PPV replication, while overexpression of CCT5 promoted PPV replication in PK-15 cells. The interaction of CCT5 and PPV NS1 was dependent on the 36-42 aa motif at the N-terminal end of NS1. More importantly, CCT5 was also found interacting with COPƐ, which has previously been demonstrated to promote PPV replication by regulating type I interferon. Interference and knockout of CCT5 expression significantly reduced the interaction of PPV NS1 and host protein COPƐ, and promoted the IFN-β expression. These results show that CCT5 mediates the interaction of PPV NS1 and COPƐ to regulate viral replication, providing new insight into the mechanism of PPV replication.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuezhi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ning Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengyu Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bicheng Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
7
|
Xu M, Jin X, Zhang C, Liao H, Wang P, Zhou Y, Song Y, Xia L, Wang L. TLR2-mediated NF-κB signaling pathway is involved in PPV1-induced apoptosis in PK-15 cells. Vet Res Commun 2022; 47:397-407. [PMID: 35729483 PMCID: PMC9213050 DOI: 10.1007/s11259-022-09954-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022]
Abstract
Porcine parvovirus 1 (PPV1) mainly induces severe reproductive failure in pregnant swine, and causes huge economic losses to the swine industry. Cell apoptosis induced by PPV1 infection has been identified the major cause of reproductive failure. However, the molecular mechanism was not fully elucidated. In this study, the potential mechanism of PPV1 induced apoptosis in PK-15 cells was investigated. Our results showed that PPV1 induced apoptosis in PK-15 cells. Further studies revealed toll-like receptor 2 (TLR2) was involved in the PPV1-mediated apoptosis. TLR2 siRNA significantly decreased the apoptosis. Finally, our study showed NF-κB was activated by TLR2 during PPV1-induced apoptosis. The activation of NF-κB signaling was demonstrated by the phosphorylation of p65, p65 nuclear translocation and degradation of inhibitor of kappa B α (IκBα). Together, these results provided evidence that the recognition between PPV1 and PK-15 cells was mainly through TLR2, and then induction of the NF-κB signaling pathway activation, which further induces apoptosis. Our study could provide information to understand the molecular mechanisms of PPV1 infection.
Collapse
Affiliation(s)
- Menglong Xu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xiaohui Jin
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Chi Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Hang Liao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Pingli Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yong Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yue Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Lu Xia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Linqing Wang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China.
| |
Collapse
|
8
|
Sun J, Liu Q, Zhang X, Dun S, Liu L. Mitochondrial hijacking: A potential mechanism for SARS-CoV-2 to impair female fertility. Med Hypotheses 2022; 160:110778. [PMID: 35103033 PMCID: PMC8791262 DOI: 10.1016/j.mehy.2022.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
As well as causing respiratory lesions, the multi-organ complications caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are also well known. Combined with the epidemiological characteristics of SARS-CoV-2 with high transmission rate and low lethality, the impact of complications caused by its infection on infected individuals seems to be of greater concern. There has been evidence that viral infection is complicated by female reproductive impairment, but the mechanism by which SARS-CoV-2 impairs female fertility is unclear. In addition, RNA-GPS technology has revealed that the SARS-CoV-2 genome resides in mitochondria of the host cells and affects mitochondrial function. Considering the close relationship between mitochondria and female fertility, this paper takes mitochondrial hijacking as an entry point to elucidate the possible mechanisms by which SARS-CoV-2 affects female fertility through the mitochondrial hijacking pathway, which will be important for timely preventive measures and identification of therapeutic targets for infected women with reproductive needs, especially those with asymptomatic infection.
Collapse
Affiliation(s)
- Jun Sun
- Medical School of Zhengzhou University, China
| | - Qiong Liu
- Medical School of Zhengzhou University, China
| | | | - Shu Dun
- Medical School of Zhengzhou University, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, China
| |
Collapse
|
9
|
Cao L, Fu F, Chen J, Shi H, Zhang X, Liu J, Shi D, Huang Y, Tong D, Feng L. Nucleocytoplasmic Shuttling of Porcine Parvovirus NS1 Protein Mediated by the CRM1 Nuclear Export Pathway and the Importin α/β Nuclear Import Pathway. J Virol 2022; 96:e0148121. [PMID: 34643426 PMCID: PMC8754214 DOI: 10.1128/jvi.01481-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Porcine parvovirus (PPV) NS1, the major nonstructural protein of this virus, plays an important role in PPV replication. We show, for the first time, that NS1 dynamically shuttles between the nucleus and cytoplasm, although its subcellular localization is predominantly nuclear. NS1 contains two nuclear export signals (NESs) at amino acids 283 to 291 (designated NES2) and amino acids 602 to 608 (designated NES1). NES1 and NES2 are both functional and transferable NESs, and their nuclear export activity is blocked by leptomycin B (LMB), suggesting that the export of NS1 from the nucleus is dependent upon the chromosome region maintenance 1 (CRM1) pathway. Deletion and site-directed mutational analyses showed that NS1 contains a bipartite nuclear localization signal (NLS) at amino acids 256 to 274. Coimmunoprecipitation assays showed that NS1 interacts with importins α5 and α7 through its NLS. The overexpression of CRM1 and importins α5 and α7 significantly promoted PPV replication, whereas the inhibition of CRM1- and importin α/β-mediated transport by specific inhibitors (LMB, importazole, and ivermectin) clearly blocked PPV replication. The mutant viruses with deletions of the NESs or NLS motif of NS1 by using reverse genetics could not be rescued, suggesting that the NESs and NLS are essential for PPV replication. Collectively, these findings suggest that NS1 shuttles between the nucleus and cytoplasm, mediated by its functional NESs and NLS, via the CRM1-dependent nuclear export pathway and the importin α/β-mediated nuclear import pathway, and PPV proliferation was inhibited by blocking NS1 nuclear import or export. IMPORTANCE PPV replicates in the nucleus, and the nuclear envelope is a barrier to its entry into and egress from the nucleus. PPV NS1 is a nucleus-targeting protein that is important for viral DNA replication. Because the NS1 molecule is large (>50 kDa), it cannot pass through the nuclear pore complex by diffusion alone and requires specific transport receptors to permit its nucleocytoplasmic shuttling. In this study, the two functional NESs in the NS1 protein were identified, and their dependence on the CRM1 pathway for nuclear export was demonstrated. The nuclear import of NS1 utilizes importins α5 and α7 in the importin α/β nuclear import pathway.
Collapse
Affiliation(s)
- Liyan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
T598 and T601 phosphorylation sites of canine parvovirus NS1 are crucial for viral replication and pathogenicity. Vet Microbiol 2021; 264:109301. [PMID: 34915313 DOI: 10.1016/j.vetmic.2021.109301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022]
Abstract
Canine parvovirus-2 (CPV-2) is an important pathogen causing severe diseases in dogs and other wild carnivores. Phosphorylation of NS1 may be related to CPV-2 pathogenicity, but the exact mechanism is unclear. Here, we conducted parvovirus disease surveillance in Shaanxi Province of China and 51 fecal swabs were detected to be infected with CPV-2. The 7 CPV-2 strains were identified, all of which belonged to CPV-2c. The complete genome sequence of one of the strains (CPV-2c XY) was cloned into pKQLL plasmid to construct a full-length infectious clone plasmid pX-CPV-2c, which carried a genetic marker. The plasmid pX-CPV-2c was transfected into F81 cells for virus rescue. And the rescued virus, which was designed as X-CPV-2c, showed the similar biological property to parental CPV-2c XY in vitro and in vivo. We further constructed four NS1 phosphorylation site mutant strains (X-CPV-2cT584A, X-CPV-2cS592A, X-CPV-2cT598A/T601A and X-CPV-2cT617A) on the basis of X-CPV-2c. After the analysis and comparison of biological characteristics, the low pathogenic strain X-CPV-2cT598A/T601A was further screened out, which emphasized the importance of phosphorylation sites 598 T/601 T for the pathogenicity of CPV-2. Overall, our data indicated that T598 and T601, the C-terminal phosphorylation site of CPV-2 NS1, play important roles in viral pathogenicity and laid the foundation for the development of new attenuated live vaccine vectors.
Collapse
|
11
|
Chen S, Chen N, Miao B, Peng J, Zhang X, Chen C, Zhang X, Chang L, Du Q, Huang Y, Tong D. Coatomer protein COPƐ, a novel NS1-interacting protein, promotes the replication of Porcine Parvovirus via attenuation of the production of type I interferon. Vet Microbiol 2021; 261:109188. [PMID: 34365051 DOI: 10.1016/j.vetmic.2021.109188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022]
Abstract
Porcine Parvovirus (PPV) is a pathogen causing porcine reproductive disorders. Non-structural protein NS1 appears diverse functions acting as a predominant regulator in promoting PPV replication. In this study, we identified a PPV NS1 binding protein coatomer subunit epsilon (COPƐ), and found that COPƐ is a critical regulator during PPV replication. In NS1 transfected or PPV infected cells, COPƐ was interacted with NS1 and translocated into nucleus together with NS1. Knockout of COPƐ could inhibit PPV production by increasing the expression levels of IFN-β, while overexpression of COPƐ enhanced PPV production by reducing the expression levels of IFN-β. Furthermore, the domain mapping assay showed that the N-terminal amino acids domain of NS1 (25-EAFSYVF-31) were required for the interaction of COPƐ with NS1. Sequence alignment result displays that parvovirus NS1 (EAFSYVF) amino acids domain is highly conservative among PPV, CPV, FPV and MEV, and down-regulation of COPƐ could also significantly reduce the replication of these viruses. Notably, we found that the interaction of COPƐ with NS1 play an important role in promoting the production of type I interferon during PPV or CPV infection, which affect the replication of these viruses. Taken together, the results presented here show a novel function of NS1 interaction with COPƐ that regulates the parvovirus replication through modulating the type I interferons signaling pathway, provided a potential target for the control of parvovirus-associated diseases.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Nannan Chen
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Bichen Miao
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Jiang Peng
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Xuezhi Zhang
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Caiyi Chen
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, YL, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, YL, China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, YL, China.
| |
Collapse
|
12
|
Zhao Z, Li J, Feng X, Tang X, Guo X, Meng Q, Rao Z, Zhao X, Feng L, Zhang H. Lipid metabolism is a novel and practical source of potential targets for antiviral discovery against porcine parvovirus. Vet Microbiol 2021; 261:109177. [PMID: 34391196 DOI: 10.1016/j.vetmic.2021.109177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023]
Abstract
How parvovirus manipulates host lipid metabolism to facilitate its propagation, pathogenicity and consequences for disease, is poorly characterized. Here, we addressed this question using porcine parvovirus (PPV) to understand the complex interactions of parvovirus with lipid metabolism networks contributing to the identification of novel and practical antiviral candidates. PPV significantly alters host lipid composition, characteristic of subclasses of phospholipids and sphingolipids, and induces lipid droplets (LDs) formation via regulating calcium-independent PLA2β (iPLA2β), phospholipase Cγ2 (PLCγ2), diacylglycerol kinase α (DKGα), phosphoinositide 3-kinase (PI3K), lysophosphatidic acid acyltransferase θ (LPAATθ), and sphingosine kinases (SphK1 and SphK2). PPV utilizes and exploits these enzymes as well as their metabolites and host factors including MAPKs (p38 and ERK1/2), protein kinase C (PKC) and Ca2+ to induce S phase arrest, apoptosis and incomplete autophagy, all benefit to PPV propagation. PPV also suppresses prostaglandin E2 (PGE2) synthesis via downregulating cyclooxygenase-1 (COX-1), indicating PPV hijacks COX-1-PGE2 axis to evade immune surveillance. Our data support a model where PPV to establishes an optimal environment for its propagation and pathogenicity via co-opting host lipid metabolism, being positioned as a source of potential targets.
Collapse
Affiliation(s)
- Zhanzhong Zhao
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaoyu Guo
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhenghua Rao
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xinghui Zhao
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
13
|
Chen S, Miao B, Chen N, Chen C, Shao T, Zhang X, Chang L, Zhang X, Du Q, Huang Y, Tong D. SYNCRIP facilitates porcine parvovirus viral DNA replication through the alternative splicing of NS1 mRNA to promote NS2 mRNA formation. Vet Res 2021; 52:73. [PMID: 34034820 PMCID: PMC8152309 DOI: 10.1186/s13567-021-00938-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
Porcine Parvovirus (PPV), a pathogen causing porcine reproductive disorders, encodes two capsid proteins (VP1 and VP2) and three nonstructural proteins (NS1, NS2 and SAT) in infected cells. The PPV NS2 mRNA is from NS1 mRNA after alternative splicing, yet the corresponding mechanism is unclear. In this study, we identified a PPV NS1 mRNA binding protein SYNCRIP, which belongs to the hnRNP family and has been identified to be involved in host pre-mRNA splicing by RNA-pulldown and mass spectrometry approaches. SYNCRIP was found to be significantly up-regulated by PPV infection in vivo and in vitro. We confirmed that it directly interacts with PPV NS1 mRNA and is co-localized at the cytoplasm in PPV-infected cells. Overexpression of SYNCRIP significantly reduced the NS1 mRNA and protein levels, whereas deletion of SYNCRIP significantly reduced NS2 mRNA and protein levels and the ratio of NS2 to NS1, and further impaired replication of the PPV. Furthermore, we found that SYNCRIP was able to bind the 3'-terminal site of NS1 mRNA to promote the cleavage of NS1 mRNA into NS2 mRNA. Taken together, the results presented here demonstrate that SYNCRIP is a critical molecule in the alternative splicing process of PPV mRNA, while revealing a novel function for this protein and providing a potential target of antiviral intervention for the control of porcine parvovirus disease.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bichen Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nannan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Caiyi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ting Shao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuezhi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
14
|
Abstract
Swine DNA viruses have developed unique mechanisms for evasion of the host immune system, infection and DNA replication, and finally, construction and release of new viral particles. This article reviews four classes of DNA viruses affecting swine: porcine circoviruses, African swine fever virus, porcine parvoviruses, and pseudorabies virus. Porcine circoviruses belonging to the Circoviridae family are small single-stranded DNA viruses causing different diseases in swine including poly-weaning multisystemic wasting syndrome, porcine dermatitis and nephropathy syndrome, and porcine respiratory disease complex. African swine fever virus, the only member of the Asfivirus genus in the Asfarviridae family, is a large double-stranded DNA virus and for its propensity to cause high mortality, it is currently considered the most dangerous virus in the pig industry. Porcine parvoviruses are small single-stranded DNA viruses belonging to the Parvoviridae family that cause reproductive failure in pregnant gilts. Pseudorabies virus, or suid herpesvirus 1, is a large double-stranded DNA virus belonging to the Herpesviridae family and Alphaherpesvirinae subfamily. Recent findings including general as well as genetic classification, virus structure, clinical syndromes and the host immune system responses and vaccine protection are described for all four swine DNA virus classes.
Collapse
|
15
|
Pietsch H, Escher F, Aleshcheva G, Lassner D, Bock CT, Schultheiss HP. Detection of parvovirus mRNAs as markers for viral activity in endomyocardial biopsy-based diagnosis of patients with unexplained heart failure. Sci Rep 2020; 10:22354. [PMID: 33339949 PMCID: PMC7749156 DOI: 10.1038/s41598-020-78597-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
Erythroparvovirus (B19V) genomes have been detected in various organs of infected individuals including endothelial cells of the heart muscle. However, the role of B19V as a causative pathogen of myocardial damage is still unknown. The majority of reports focus on the presence of viral DNA ignoring proof of viral RNAs as important markers for viral activity. During this study, we established (RT-) qPCR to characterize expression of B19V RNAs (NS1 and VP1/2) in endomyocardial biopsies (EMBs) of 576 patients with unexplained heart failure. 403/576 (70%) EMBs were positive for B19V DNA. B19V mRNAs NS1 and/or VP1/2, indicating viral activity, could be detected in 38.5% of B19V DNA positive samples using the newly established B19V RT-PCRs. 22.1% of samples were characterized by only NS1 mRNA detection while 6.0% revealed only VP1/2 mRNA expression. Detection of both intermediates was successful in 10.4% of samples. Applying the molecular testing, our study revealed that a high proportion (38.5%) of B19V DNA positive EMBs was characterized by viral transcriptional activity. Further prospective studies will evaluate relevance of viral transcription intermediates as a diagnostic marker to differentiate between latent B19V infection and clinically relevant transcriptionally active B19V-infection of the heart muscle.
Collapse
Affiliation(s)
- Heiko Pietsch
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany.,Department of Cardiology, Campus Rudolf Virchow, Charité-University Medicine Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Felicitas Escher
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany.,Department of Cardiology, Campus Rudolf Virchow, Charité-University Medicine Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ganna Aleshcheva
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany
| | - Dirk Lassner
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany
| | - Claus-Thomas Bock
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany
| | - Heinz-Peter Schultheiss
- IKDT Institute of Cardiac Diagnostics and Therapy GmbH, Moltkestrasse 31, 12203, Berlin, Germany.
| |
Collapse
|
16
|
Han L, Ma Q, Yu J, Gong Z, Ma C, Xu Y, Deng G, Wu X. Autophagy plays a protective role during Pseudomonas aeruginosa-induced apoptosis via ROS-MAPK pathway. Innate Immun 2020; 26:580-591. [PMID: 32878509 PMCID: PMC7556189 DOI: 10.1177/1753425920952156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa infection can induce alveolar macrophage apoptosis and autophagy, which play a vital role in eliminating pathogens. These two processes are usually not independent. Recently, autophagy has been found to interact with apoptosis during pathogen infections. Nevertheless, the role of autophagy in P. aeruginosa-infected cell apoptosis is unclear. In this study, we explored the impact of P. aeruginosa infection on autophagy and apoptosis in RAW264.7 cells. The autophagy activator rapamycin was used to stimulate autophagy and explore the role of autophagy on apoptosis in P. aeruginosa-infected RAW264.7 cells. The results indicated that P. aeruginosa infection induced autophagy and apoptosis in RAW264.7 cells, and that rapamycin could suppress P. aeruginosa-induced apoptosis by regulating the expression of apoptosis-related proteins. In addition, rapamycin scavenged the cellular reactive oxygen species (ROS) and diminished p-JNK, p-ERK1/2 and p-p38 expression of MAPK pathways in RAW264.7 cells infected with P. aeruginosa. In conclusion, the promotion of autophagy decreased P. aeruginosa-induced ROS accumulation and further attenuated the apoptosis of RAW264.7 cells through MAPK pathway. These results provide novel insights into host-pathogen interactions and highlight a potential role of autophagy in eliminating P. aeruginosa.
Collapse
Affiliation(s)
- Lu Han
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Qinmei Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Jialin Yu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Zhaoqian Gong
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Chenjie Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Yanan Xu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan, China
- School of Life Science, NingXia University, NingXia, Yinchuan, China
| |
Collapse
|
17
|
Wang X, Zhang J, Huo S, Zhang Y, Wu F, Cui D, Yu H, Zhong F. Development of a monoclonal antibody against canine parvovirus NS1 protein and investigation of NS1 dynamics and localization in CPV-infected cells. Protein Expr Purif 2020; 174:105682. [PMID: 32502709 DOI: 10.1016/j.pep.2020.105682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Canine parvovirus (CPV) non-structural protein-1 (NS1) plays crucial roles in CPV replication and transcription, as well as pathogenic effects to the host. However, the mechanism was not fully understood. Lack of NS1 antibody is one of the restricting factors for NS1 function investigation. To prepare NS1 monoclonal antibody (mAb), the NS1 epitope (AA461 ~ AA650) gene was amplified by PCR, and inserted into pGEX-4T-1vector to construct the prokaryotic expression vector of GST-tag-fused NS1 epitope gene. The NS1 fusion protein was expressed in E. coli, and purified with GSH-magnetic beads, and then used to immunize BALB/c mice. The mouse splenic lymphocytes were isolated and fused with myeloma cells (SP 2/0) to generate hybridoma cells. After several rounds of screening by ELISA, a hybridoma cell clone (1B8) stably expressing NS1 mAb was developed. A large amount of NS1 mAb was prepared from mouse ascites fluid. The isotype of NS1 mAb was identified as IgG1, which can specifically bind NS1 protein in either CPV-infected cells or NS1 vector-transfected cells, indicating the NS1 mAb is effective in detecting NS1 protein. Meanwhile, we used the NS1 mAb to investigate NS1 dynamic changes by qRT-PCR and location by confocal imaging in CPV-infected host cells and showed that NS1 began to appear in the cells at 12 h after CPV infection and reached the highest level at 42 h, NS1 protein was mainly located in nucleus of the cells. This study provided a necessary condition for further investigation on molecular mechanism of NS1 function and pathogenicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Cell Line
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Female
- Mice
- Mice, Inbred BALB C
- Parvoviridae Infections/immunology
- Parvoviridae Infections/metabolism
- Parvovirus, Canine/chemistry
- Parvovirus, Canine/genetics
- Parvovirus, Canine/immunology
- Parvovirus, Canine/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Xing Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Hongwei Yu
- Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
18
|
Ma X, Guo Z, Zhang Z, Li X, Wang X, Liu Y, Wang X. Ferulic acid isolated from propolis inhibits porcine parvovirus replication potentially through Bid-mediate apoptosis. Int Immunopharmacol 2020; 83:106379. [PMID: 32172206 DOI: 10.1016/j.intimp.2020.106379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Abstract
Propolis from honeybee hives, which is a traditional Chinese medicine, is widely used in veterinary clinics. Many compounds have been identified and isolated from propolis. Ferulic acid (FA), one of the propolis components, previous studies have proven that it has antiviral effects. To study the mechanism of FA antiviral effects, experiments such as immunofluorescence, quantitative real-time PCR and immunoblotting were introduced. In porcine kidney (PK-15) cells, PPV infection induced the expression of the proapoptotic genes Bid, Bad, Bim and Bak, disrupted mitochondrial membrane potential, promoted mitochondria-mediated, caspase-dependent apoptotic signaling and induced apoptosis. Furthermore, the infected PK-15 cells had increased intracellular reactive oxygen species (ROS) generation. FA treatment, however, reversed these effects and increased cell viability. FA treatment also significantly decreased the PPV-induced expression of Bid, Cyt-c and Apaf-1, suggesting that ROS were involved in the activation of the mitochondria-mediated apoptosis pathway. This in vitro study showed that the antiviral activity of FA was probably associated with inhibiting the replication of PPV by blocking proapoptotic factors such as Bid, Bcl-2 and Mcl-1, and attenuating the mitochondria-mediated response by inhibiting the activation of the Bid-related signaling pathway. Pharmacological inhibitors inhibited PPV-induced apoptosis by blocking Bid, and also suppressed the expression of Caspase family proteins in ppv-induced apoptosis. Taken together, our results suggested that PPV induced PK-15 cell apoptosis via activation of Bid and Bid-related signaling pathways and that the mitochondria act as the mediators of these pathways. FA effectively and extensively attenuated this PPV action, and thus is a potential antiviral agent against PPV.
Collapse
Affiliation(s)
- Xia Ma
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China.
| | - Zhenhuan Guo
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China
| | - Zhiqiang Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xianghui Li
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China
| | - Xiujun Wang
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China
| | - Yonglu Liu
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China.
| | - Xuefei Wang
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, PR China
| |
Collapse
|
19
|
Ferulic Acid Protects against Porcine Parvovirus Infection-Induced Apoptosis by Suppressing the Nuclear Factor- κB Inflammasome Axis and Toll-Like Receptor 4 via Nonstructural Protein 1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3943672. [PMID: 32382287 PMCID: PMC7199543 DOI: 10.1155/2020/3943672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022]
Abstract
Background Porcine parvovirus (PPV) infection-induced apoptosis was recently identified as an important pathological factor in PPV-induced placental tissue damage, resulting in reproduction failure. In the present study, we demonstrate the possible involvement of toll-like receptor (TLR) 4 and nuclear factor (NF)-κB inflammasome activation in PPV infection-induced apoptosis and the protective potential of ferulic acid (FA). PPV infection significantly activated the expression levels of TLR4, NF-κB, MyD88, and interleukin (IL)-6. However, FA ameliorated the pathological process, prevented histological alterations, and inhibited the apoptosis rate in porcine kidney (PK-15) cells infected with PPV. Results FA inhibited PPV infection-induced inflammasome activation as shown by decreases in the expression of NF-κB, MyD88, and IL-6. FA also downregulated nonstructural (NS) 1 protein expression in infected PK-15 cells. Conclusions FA downregulated NS1 and TLR4 signaling, prevented the overproduction of reactive oxygen species, and suppressed the NF-κB inflammasome axis to inhibit PPV-induced apoptosis in PK-15 cells.
Collapse
|
20
|
Chen S, Miao B, Chen N, Zhang X, Zhang X, Du Q, Huang Y, Tong D. A novel porcine parvovirus DNA-launched infectious clone carrying stable double labels as an effective genetic platform. Vet Microbiol 2019; 240:108502. [PMID: 31902505 DOI: 10.1016/j.vetmic.2019.108502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Porcine parvovirus (PPV) is one of the major pathogens causing reproductive failure of swine. However, its specific pathogenesis has not been fully elucidated. Infectious clone is a powerful tool for further studying the pathogenic mechanism of PPV. In the present study, a PPV infectious clone was constructed, and the clone carries His-tag and Flag-tag double-genetic marker at the end of the ns1 gene 3' terminal and vp1 gene 5' terminal, respectively. The PPV DNA fragment F1 (1-182) in 5' end and the other PPV DNA fragment F2 (4788-5074) in 3' end were synthesized and assembled to the lower copy plasmid to construct pKQLL(F1 + F2), while the PPV DNA genome as a template to amplify carrying tags sequence PPV middle DNA fragment F3 and F4 by introducing Flag and His tags sequence in primers. Subsequently, the fused fragment F3/F4 were cloned into the Stu I/Sna B I sites of pKQLL(F1 + F2) plasmid to assemble the complete full-length PPV DNA recombinant plasmids, named as pD-PPV. The pD-PPV was transfected into PK-15 cells to gain rescued PPV virus, designed as D-PPV. Moreover, D-PPV showed similar replicate capability and pathogenicity comparing to the wild-type parental PPV through in vitro and in vivo studies, and the double labels can effectively indicate the expression and localization of viral proteins. Finally, the rescued D-PPV was found to be a convenient tool for antiviral drug screening. These data indicated that the newly established reverse genetic system for PPV would be a useful tool for further studying the pathogenesis mechanisms of PPV, developing labeled vaccine and screening antiviral drug.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bichen Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nannan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuezhi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|