1
|
Johnson P, Needham J, Lim N, Simon A. Direct nanopore RNA sequencing of umbra-like virus-infected plants reveals long non-coding RNAs, specific cleavage sites, D-RNAs, foldback RNAs, and temporal- and tissue-specific profiles. NAR Genom Bioinform 2024; 6:lqae104. [PMID: 39157584 PMCID: PMC11327873 DOI: 10.1093/nargab/lqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The traditional view of plus (+)-strand RNA virus transcriptomes is that infected cells contain a limited variety of viral RNAs, such as full-length (+)-strand genomic RNA(s), (-)-strand replication intermediate(s), 3' co-terminal subgenomic RNA(s), and viral recombinant defective (D)-RNAs. To ascertain the full complement of viral RNAs associated with the simplest plant viruses, long-read direct RNA nanopore sequencing was used to perform transcriptomic analyses of two related umbra-like viruses: citrus yellow vein-associated virus (CY1) from citrus and CY2 from hemp. Analysis of different timepoints/tissues in CY1- and CY2-infected Nicotiana benthamiana plants and CY2-infected hemp revealed: (i) three 5' co-terminal RNAs of 281 nt, 442 nt and 671 nt, each generated by a different mechanism; (ii) D-RNA populations containing the 671 fragment at their 5'ends; (iii) many full-length genomic RNAs and D-RNAs with identical 3'end 61 nt truncations; (iv) virtually all (-)-strand reads missing 3 nt at their 3' termini; (v) (±) foldback RNAs comprising about one-third of all (-)-strand reads and (vi) a higher proportion of full-length gRNAs in roots than in leaves, suggesting that roots may be functioning as a gRNA reservoir. These findings suggest that viral transcriptomes are much more complex than previously thought.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Jason M Needham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Natalie K Lim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| |
Collapse
|
2
|
Simon AE, Quito-Avila DF, Bera S. Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement. Annu Rev Virol 2024; 11:283-308. [PMID: 38876114 DOI: 10.1146/annurev-virology-111821-122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3'-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for trans-encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida and Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
3
|
Das P, Grover M, Mishra DC, Guha Majumdar S, Shree B, Kumar S, Mir ZA, Chaturvedi KK, Bhardwaj SC, Singh AK, Rai A. Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. FRONTIERS IN PLANT SCIENCE 2023; 14:1120898. [PMID: 37650000 PMCID: PMC10465180 DOI: 10.3389/fpls.2023.1120898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.
Collapse
Affiliation(s)
- Parinita Das
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Bharti Shree
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
4
|
Wang Y, Folimonova SY. Long Noncoding RNAs in Plant-Pathogen Interactions. PHYTOPATHOLOGY 2023; 113:1380-1386. [PMID: 36945729 PMCID: PMC10511663 DOI: 10.1094/phyto-02-23-0051-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) are commonly defined as transcripts that lack protein-coding capacity and are longer than 200 nucleotides. Since the emergence of next-generation sequencing technologies in this century, thousands of lncRNAs have been identified from nearly all living organisms. Notably, various pathogens also express their own lncRNAs in host cells during infection. In plants, many lncRNAs exhibit dynamic expression patterns in response to environmental stimuli, including pathogen attacks. In contrast to well-established methods in identifying such lncRNAs, the current understanding of lncRNAs' functional mechanisms is in its infancy. Some lncRNAs serve as precursors for generating small RNAs or serve as target mimics to sequester functional small RNAs, which have been extensively reviewed in the literature. This review focuses on the emerging evidence supporting that certain lncRNAs function as negative or positive regulators of plant immunity. A common theme is that those regulations rely on specific interactions between lncRNAs and key regulatory proteins. Viroids as single-stranded circular noncoding RNAs provide a handle to investigate how RNA local motifs render interaction specificity between lncRNAs and regulatory proteins. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, Florida 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
5
|
Zhuo X, Yu Q, Russo R, Zhang Y, Wei X, Wang YZ, Holden PM, Gmitter FG. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1090711. [PMID: 36890903 PMCID: PMC9986497 DOI: 10.3389/fpls.2023.1090711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) serve as crucial regulators in plant response to various diseases, while none have been systematically identified and characterized in response to citrus Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) bacteria. Here, we comprehensively investigated the transcriptional and regulatory dynamics of the lncRNAs in response to CLas. Samples were collected from leaf midribs of CLas- and mock-inoculated HLB-tolerant rough lemon (Citrus jambhiri) and HLB-sensitive sweet orange (C. sinensis) at week 0, 7, 17, and 34 following inoculation using CLas+ budwood of three biological replicates in the greenhouse. A total of 8,742 lncRNAs, including 2,529 novel lncRNAs, were identified from RNA-seq data with rRNA-removed from strand-specific libraries. Genomic variation analyses of conserved lncRNAs from 38 citrus accessions showed that 26 single nucleotide polymorphisms (SNPs) were significantly correlated with HLB. In addition, lncRNA-mRNA weighted gene co-expression network analysis (WGCNA) showed a significant module correlated with CLas-inoculation in rough lemon. Notably, the most significant LNC_28805 and multiple co-expressed genes related to plant defense in the module were targeted by miRNA5021, suggesting that LNC28805 might compete with endogenous miR5021 to maintain the homeostasis of immune gene expression levels. Candidate WRKY33 and SYP121 genes targeted by miRNA5021 were identified as two key hub genes interacting with bacteria pathogen response genes based on the prediction of protein-protein interaction (PPI) network. These two genes were also found within HLB-associated QTL in linkage group 6. Overall, our findings provide a reference for a better understanding of the role of lncRNAs involved in citrus HLB regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fred G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
6
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
7
|
Folimonova SY, Sun YD. Citrus Tristeza Virus: From Pathogen to Panacea. Annu Rev Virol 2022; 9:417-435. [DOI: 10.1146/annurev-virology-100520-114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries. Research on CTV is accompanied by distinctive challenges stemming from the large size of its RNA genome, the narrow host range limited to slow-growing Citrus species and relatives, and the complexity of CTV populations. Despite these hurdles, remarkable progress has been made in understanding the CTV-host interactions and in converting the virus into a tool for crop protection and improvement. This review focuses on recent advances that have shed light on the mechanisms underlying CTV infection. Understanding these mechanisms is pivotal for the development of means to control CTV diseases and, ultimately, turn this virus into an ally. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, USA
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. J Virol 2021; 96:e0181521. [PMID: 34851690 PMCID: PMC8826918 DOI: 10.1128/jvi.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5′→3′ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3′ region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.
Collapse
|
9
|
Kang SH, Aknadibossian V, Kharel L, Mudiyanselage SDD, Wang Y, Folimonova SY. The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus Tristeza Virus That Interacts with a Viral Long Non-Coding RNA. Viruses 2021; 13:2129. [PMID: 34834936 PMCID: PMC8625556 DOI: 10.3390/v13112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5'-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that performs multiple functions in the virus infection cycle, specifically binds LMT1, both in vivo and in vitro. These results were obtained through the expression of p33 under the context of the wild type virus infection or along with a mutant CTV variant that does not produce LMT1 as well as via ectopic co-expression of p33 with LMT1 in Nicotiana benthamiana leaves followed by RNA immunoprecipitation and rapid amplification of cDNA ends assays. Further experiments in which a recombinant p33 protein and an in vitro transcribed full-length LMT1 RNA or its truncated fragments were subjected to an electrophoretic mobility shift assay demonstrated that p33 binds to at least two distinct regions within LMT1. To the best of our knowledge, this is the first report of a plant virus protein binding to a lncRNA produced by the same virus. The biological significance of the interaction between these two viral factors is discussed.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Vicken Aknadibossian
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Laxmi Kharel
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| |
Collapse
|
10
|
Zhang YY, Hong YH, Liu YR, Cui J, Luan YS. Function identification of miR394 in tomato resistance to Phytophthora infestans. PLANT CELL REPORTS 2021; 40:1831-1844. [PMID: 34230985 DOI: 10.1007/s00299-021-02746-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
MiR394 plays a negative role in tomato resistance to late blight. The lncRNA40787 severing as an eTM for miR394 to regulate LCR and exerting functions in tomato resistance. Tomato (Solanum lycopersicum), which was used as model species for studying the mechanism of plant disease defense, is susceptible to multiple pathogens. Non-coding RNA (ncRNA) has a pivotal role in plants response to biological stresses. It has previously been observed that the expression level of miR394 changed significantly after the infection of various pathogens. However, there has been no detailed investigation of the accumulated or suppressed mechanism of miR394. Our previous study predicted three lncRNAs (lncRNA40787, lncRNA27177, and lncRNA42566) that contain miR394 endogenous target mimics (eTM), which may exist as the competitive endogenous RNAs (ceRNAs) of miR394. In our study, the transcription levels of these three lncRNAs were strongly up-regulated in tomato upon infection with P. infestans. In contrast with the three lncRNAs, the accumulation of miR394 was significantly suppressed. Based on the expression pattern, and value of minimum free energy (mfes) that represents the binding ability between lncRNA and miRNA, lncRNA40787 was chosen for further investigation. Results showed that overexpression of lncRNA40787 reduced the expression of miR394 along with decreased lesion area and enhanced disease resistance. Overexpression of miR394, however, decreased the expression of its target gene Leaf Curling Responsiveness (LCR), and suppressed the synthesis components genes of jasmonic acid (JA), depressing the resistance of tomato to P. infestans infection. Taken together, our findings indicated that miR394 can be decoyed by lncRNA40787, and negatively regulated the expression of LCR to enhance tomato susceptibility under P. infestans infection. Our study provided detailed information on the lncRNA40787-miR394-LCR regulatory network and serves as a reference for future research.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Hui Hong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Rong Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Shi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
11
|
Yang Z, Zhang Y, Wang G, Wen S, Wang Y, Li L, Xiao F, Hong N. The p23 of Citrus Tristeza Virus Interacts with Host FKBP-Type Peptidyl-Prolylcis-Trans Isomerase 17-2 and Is Involved in the Intracellular Movement of the Viral Coat Protein. Cells 2021; 10:934. [PMID: 33920690 PMCID: PMC8073322 DOI: 10.3390/cells10040934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Citrus tristeza virus is a member of the genus Closterovirus in the family Closteroviridae. The p23 of citrus tristeza virus (CTV) is a multifunctional protein and RNA silencing suppressor. In this study, we identified a p23 interacting partner, FK506-binding protein (FKBP) 17-2, from Citrus aurantifolia (CaFKBP17-2), a susceptible host, and Nicotiana benthamiana (NbFKBP17-2), an experimental host for CTV. The interaction of p23 with CaFKBP17-2 and NbFKBP17-2 were individually confirmed by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Subcellular localization tests showed that the viral p23 translocated FKBP17-2 from chloroplasts to the plasmodesmata of epidermal cells of N. benthamiana leaves. The knocked-down expression level of NbFKBP17-2 mRNA resulted in a decreased CTV titer in N. benthamiana plants. Further, BiFC and Y2H assays showed that NbFKBP17-2 also interacted with the coat protein (CP) of CTV, and the complexes of CP/NbFKBP17-2 rapidly moved in the cytoplasm. Moreover, p23 guided the CP/NbFKBP17-2 complexes to move along the cell wall. To the best of our knowledge, this is the first report of viral proteins interacting with FKBP17-2 encoded by plants. Our results provide insights for further revealing the mechanism of the CTV CP protein movement.
Collapse
Affiliation(s)
- Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Liu Li
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Feng Xiao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
12
|
Host-virus interactions mediated by long non-coding RNAs. Virus Res 2021; 298:198402. [PMID: 33771610 DOI: 10.1016/j.virusres.2021.198402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Viruses are obligate pathogens that cause a wide range of diseases across all kingdoms of life. They have a colossal impact on the economy and healthcare infrastructure world-wide. Plants and animals have developed sophisticated molecular mechanisms to defend themselves against viruses and viruses in turn hijack host mechanisms to ensure their survival inside their hosts. Long non-coding (lnc) RNAs have emerged as important macromolecules that regulate plant-virus and animal-virus interactions. Both pro-viral and anti-viral lncRNAs have been reported and they show immense potential to be used as markers and in therapeutics. The current review is focussed on the recent developments that have been made in viral interactions of animals and plants.
Collapse
|
13
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
14
|
Taliansky M, Samarskaya V, Zavriev SK, Fesenko I, Kalinina NO, Love AJ. RNA-Based Technologies for Engineering Plant Virus Resistance. PLANTS 2021; 10:plants10010082. [PMID: 33401751 PMCID: PMC7824052 DOI: 10.3390/plants10010082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. We also elaborate on the challenges that need to be overcome before such technologies can be broadly exploited for crop protection against viruses.
Collapse
Affiliation(s)
- Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| | - Viktoria Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
| | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.S.); (S.K.Z.); (I.F.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: (M.T.); (A.J.L.)
| |
Collapse
|
15
|
Shrestha N, Bujarski JJ. Long Noncoding RNAs in Plant Viroids and Viruses: A Review. Pathogens 2020; 9:E765. [PMID: 32961969 PMCID: PMC7559573 DOI: 10.3390/pathogens9090765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular, single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle mechanism. Viroids interact with host processes in complex ways, emerging as one of the most productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms. Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs, small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate. They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.
Collapse
Affiliation(s)
- Nipin Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - Józef J. Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
16
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
17
|
Dao TNM, Kang SH, Bak A, Folimonova SY. A Non-Conserved p33 Protein of Citrus Tristeza Virus Interacts with Multiple Viral Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:859-870. [PMID: 32141354 DOI: 10.1094/mpmi-11-19-0328-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA genome of citrus tristeza virus (CTV), one of the most damaging viral pathogens of citrus, contains 12 open reading frames resulting in production of at least 19 proteins. Previous studies on the intraviral interactome of CTV revealed self-interaction of the viral RNA-dependent RNA polymerase, the major coat protein (CP), p20, p23, and p33 proteins, while heterologous interactions between the CTV proteins have not been characterized. In this work, we examined interactions between the p33 protein, a nonconserved protein of CTV, which performs multiple functions in the virus infection cycle and is needed for virus ability to infect the extended host range, with other CTV proteins shown to mediate virus interactions with its plant hosts. Using yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays, we demonstrated that p33 interacts with three viral proteins, i.e., CP, p20, and p23, in vivo and in planta. Coexpression of p33, which is an integral membrane protein, resulted in a shift in the localization of the p20 and p23 proteins toward the subcellular crude-membrane fraction. Upon CTV infection, the four proteins colocalized in the CTV replication factories. In addition, three of them, CP, p20, and p23, were found in the p33-formed membranous structures. Using bioinformatic analyses and mutagenesis, we found that the N-terminus of p33 is involved in the interactions with all three protein partners. A potential role of these interactions in virus ability to infect the extended host range is discussed.
Collapse
Affiliation(s)
- Thi Nguyet Minh Dao
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | | |
Collapse
|
18
|
Folimonova SY. Citrus tristeza virus: A large RNA virus with complex biology turned into a valuable tool for crop protection. PLoS Pathog 2020; 16:e1008416. [PMID: 32353070 PMCID: PMC7192379 DOI: 10.1371/journal.ppat.1008416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Svetlana Y. Folimonova
- University of Florida, Plant Pathology Department, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|