1
|
Shirafuji H, Kishida N, Murota K, Suda Y, Yanase T. Genetic Characterization of Palyam Serogroup Viruses Isolated in Japan from 1984 to 2018 and Development of a Real-Time RT-PCR Assay for Broad Detection of Palyam Serogroup Viruses and Specific Detection of Chuzan (Kasba) and D'Aguilar Viruses. Pathogens 2024; 13:550. [PMID: 39057776 PMCID: PMC11279806 DOI: 10.3390/pathogens13070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
We performed whole genome sequencing (WGS) of 15 Palyam serogroup virus (PALV) strains isolated from cattle or Culicoides biting midges in Japan from 1984 to 2018. We found that the PALV strains consisted of Chuzan (Kasba) virus (CHUV), D'Aguilar virus (DAGV), Bunyip Creek virus, and another PALV, Marrakai virus (MARV). The Japanese MARV strains isolated in 1997 were closely related to Australian PALV strains isolated in 1968-1976 in genome segments 2 and 10, but they were most closely related to other Japanese PALV strains in the other genome segments. Our data suggest that the Japanese MARV strains were reassortant viruses between Asian and Australian PALVs. In addition to the WGS, we developed a real-time reverse-transcription polymerase chain reaction assay that can broadly detect PALV and specifically detect CHUV and DAGV, utilizing the data obtained by the WGS in this study. We detected the DAGV gene in bovine stillborn fetuses and congenitally abnormal calves in 2019 using the newly developed assay. To our knowledge, this is the first report of isolation of MARV outside of Australia and the first report of detection of PALV in bovine fetuses or calves with congenital abnormality outside of Africa.
Collapse
Affiliation(s)
- Hiroaki Shirafuji
- Exotic Disease Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira 187-0022, Tokyo, Japan
| | - Natsumi Kishida
- Virus Group, Division of Infectious Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; (N.K.); (Y.S.)
| | - Katsunori Murota
- Epidemiology and Arbovirus Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Kagoshima, Japan; (K.M.); (T.Y.)
| | - Yuto Suda
- Virus Group, Division of Infectious Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan; (N.K.); (Y.S.)
| | - Tohru Yanase
- Epidemiology and Arbovirus Group, Division of Transboundary Animal Disease Research, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Kagoshima, Japan; (K.M.); (T.Y.)
| |
Collapse
|
2
|
Seroprevalence and Epidemiological Risk Factors for Kasba Virus Among Sheep and Goats in South Korea: A Nationwide Retrospective Study. J Vet Res 2022; 66:325-331. [PMID: 36349128 PMCID: PMC9597943 DOI: 10.2478/jvetres-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Kasba virus belongs to the Palyam serogroup of the Orbivirus genus and Reoviridae family. Kasba virus is the causative agent of many reproductive disorders in infected animals, which result in considerable economic losses, mainly in the cattle industry. The epidemiology of Kasba virus infection is poorly defined and remains unclear in South Korea. Material and Methods This study investigated the prevalence of antibodies against Kasba virus in sheep and goats in South Korea. Individual, management, and regional risk factors associated with seropositivity were also evaluated. In addition, a retrospective serosurvey was conducted. Results Serum samples from 28 out of 441 sheep or goat flocks (6.3%, 95% confidence interval (CI): 4.4-9.0%) and 115 out of 1003 animals (11.5%, 95% CI 9.6-13.6%) were positive for antibodies against Kasba virus. According to our results, a history of reproductive problems increased the probability of Kasba virus positivity. Preventive measures such as routine insecticide application decreased this probability. We observed significant differences in the prevalence of seropositivity between southern provinces and northern provinces and between western provinces and eastern provinces at the individual level. Conclusion The virus was widely distributed among sheep and goats in South Korea, with seropositivity ranging from 6.8% in 2004 to 13.7% in 2008. The current study represents the first assessment of factors associated with Kasba virus seroprevalence in sheep and goats in South Korea.
Collapse
|
3
|
Agnihotri K, Oakey J, Smith C, Weir R, Pyke A, Melville L. Genome-scale molecular and phylogenetic characterization of Middle Point orbiviruses from Australia. J Gen Virol 2021; 102. [PMID: 34870577 DOI: 10.1099/jgv.0.001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle Point orbivirus (MPOV) is an Australian arbovirus, belongs to the Yunnan orbivirus species found in China. First detected and reported from Beatrice Hill, Northern Territory (NT), MPOV has to date, only been exclusively reported from the NT, Australia. Whilst genetic characterization of MPOV has been previously described, only restricted to sequence information for segments 2 and 3 coding core protein VP2 and outer capsid protein VP3, respectively. This study presents for the first time nearly full-length genome sequences of MPOV, which represent 24 isolates collected over a span of more than 20 years from 1997 to 2018. Whilst the majority of isolates were sampled at Beatrice Hill, NT where MPOV is most frequently isolated, this report also describes the first two isolations of MPOV from Queensland (QLD), Australia. One of which is the first non-bovine isolate obtained from the mosquito vector Aedes vittiger. We further compared these MPOV sequences with known sequences of the Yunnan orbivirus and other known orbivirus sequences of mosquito origin found in Australia. The phylogenetic analyses indicate the Australian MPOV sequences are more closely related to each other than other known sequences of Yunnan orbivirus. Furthermore, MPOV sequences are closely related to sequences from the Indonesian isolate JKT-8650. The clustering of Australian sequences in the phylogenetic tree suggests the monophyletic lineage of MPOV circulating in Australia. Further, ongoing surveillance is required to assess the existence and prevalence of this or other yet undetected lineages of MPOV and other orbiviruses in Australia.
Collapse
Affiliation(s)
- Kalpana Agnihotri
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Craig Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| | - Alyssa Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, 4108, Brisbane, Queensland, Australia
| | - Lorna Melville
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| |
Collapse
|
4
|
Murota K, Ishii K, Mekaru Y, Araki M, Suda Y, Shirafuji H, Kobayashi D, Isawa H, Yanase T. Isolation of Culicoides- and Mosquito-Borne Orbiviruses in the Southwestern Islands of Japan Between 2014 and 2019. Vector Borne Zoonotic Dis 2021; 21:796-808. [PMID: 34463150 DOI: 10.1089/vbz.2021.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of arboviruses in livestock ruminants has often gone unrecognized owing to the fact that a significant percentage of arboviruses probably induce subclinical infections and/or negligible symptoms in infected animals. To determine the current situation of arbovirus circulation in the Yaeyama Islands, attempts to isolate viruses from bovine blood samples collected between 2014 and 2019 have been made. In total, 308 blood samples were collected during the study period, and 43 of them induced cytopathic effects (CPEs) in cell cultures. The identification of the CPE agents was performed by reported RT-PCR assays and a high-throughput analysis with a next-generation sequencing platform. The obtained viruses consisted of an orthobunyavirus (Peaton virus), Culicoides-borne orbiviruses (bluetongue virus serotypes 12 and 16, epizootic hemorrhagic disease virus [EHDV] serotypes 5, 6, and 7, D'Aguilar virus, and Bunyip Creek virus), and potential mosquito-borne orbiviruses (Yunnan orbivirus, Guangxi orbivirus, and Yonaguni orbivirus). Most of the orbiviruses were recovered from washed blood cells with mosquito cell cultures, suggesting that this combination was more efficient than other combinations such as plasma/blood cells and hamster cell lines. This marked the first time that the isolation of EHDV serotypes 5 and 6 and three potential mosquito-borne orbiviruses was recorded in Japan, showing a greater variety of orbiviruses on the islands than previously known. Genetic analysis of the isolated orbiviruses suggested that the Yaeyama Islands and its neighboring regions were epidemiologically related. Some of the viruses, especially the potential mosquito-borne orbiviruses, were isolated during several consecutive years, indicating their establishment on the islands.
Collapse
Affiliation(s)
- Katsunori Murota
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Keiko Ishii
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Yuji Mekaru
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Miho Araki
- Yaeyama Livestock Hygiene Service Center, Ishigaki, Japan
| | - Yuto Suda
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Hiroaki Shirafuji
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tohru Yanase
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| |
Collapse
|
5
|
Guggemos HD, Fendt M, Hermanns K, Hieke C, Heyde V, Mfune JKE, Borgemeister C, Junglen S. Orbiviruses in biting midges and mosquitoes from the Zambezi region, Namibia. J Gen Virol 2021; 102. [PMID: 34554079 DOI: 10.1099/jgv.0.001662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Orbivirus includes a variety of pathogenic viruses that are transmitted by biting midges, mosquitoes and ticks. Some of the economically most relevant orbiviruses are endemic to Namibia, like the livestock-pathogenic Bluetongue and African horse sickness viruses. Here, we assessed the diversity of orbiviruses circulating in the Zambezi region of north-eastern Namibia. A total of 10 250 biting midges and 10 206 mosquitoes were collected and screened for orbivirus infections. We identified Palyam virus (PALV) in a pool of biting midges (Culicoides sp.) sampled in the Wuparo Conservancy and three strains of Corriparta virus (CORV) in Culex sp. mosquitoes sampled in Mudumu National Park and the Mashi Conservancy. This is, to our knowledge, the first detection of PALV and CORV in Namibia. Both viruses infect vertebrates but only PALV has been reported to cause disease. PALV can cause foetal malformations and abortions in ruminants. Furthermore, a novel orbivirus, related to Kammavanpettai virus from India and Umatilla virus from North America, was discovered in biting midges (Culicoides sp.) originating from Mudumu National Park and tentatively named Mudumu virus (MUMUV). Complete genomes of PALV, CORV and MUMUV were sequenced and genetically characterized. The Namibian CORV strain showed 24.3 % nucleotide divergence in its subcore shell gene to CORV strains from Australia, indicating that African CORV variants vary widely from their Australian relatives. CORV was isolated in cell culture and replicated to high titres in mosquito and duck cells. No growth was found in rodent and primate cells. The data presented here show that diverse orbiviruses are endemic to the Zambezi region. Further studies are needed to assess their effects on wildlife and livestock.
Collapse
Affiliation(s)
- Heiko D Guggemos
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Matthias Fendt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
| | - Christian Hieke
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
| | - Verena Heyde
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
| | - John K E Mfune
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia
| | | | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| |
Collapse
|
6
|
Li ZR, Yang ZX, Li ZH, Gao X, Hu ZY, Yang H, Liao DF. Development and evaluation of recombinase polymerase amplification combined with lateral flow dipstick assays for co-detection of epizootic haemorrhagic disease virus and the Palyam serogroup virus. BMC Vet Res 2021; 17:286. [PMID: 34433470 PMCID: PMC8390197 DOI: 10.1186/s12917-021-02977-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Epizootic haemorrhagic disease virus (EHDV) and the Palyam serogroup viruses (PALV) have led to significant economic losses associated with livestock production globally. A rapid, sensitive and specific method for the detection of EHDV and PALV is critical for virus detection, monitoring, and successful control and elimination of related diseases. Results In the present study, a recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) assay for the co-detection of genome segment 1 (Seg-1) of EHDV and PALV was developed and evaluated. The analytical sensitivities of the established RPA-LFD assay in the detection of EHDV and PALV were 7.1 copies/µL and 6.8 copies/µL, respectively. No cross-reaction with other members of the genus Orbivirus, including African horse sickness virus, bluetongue virus, Guangxi orbivirus, Tibet orbivirus and Yunnan orbivirus was observed. The established RPA-LFD assay accurately detected 39 EHDV strains belonging to 5 serotypes and 29 PALV strains belonging to 3 serotypes. The trace back results of quantitative real-time polymerase chain reaction (qRT-PCR) and the established RPA-LFD assay on sentinel cattle were consistent. The coincidence rates of qRT-PCR and the established RPA-LFD assay in 56 blood samples from which EHDV or PALV had been isolated and 96 blood samples collected from cattle farms were more than 94.8 %. The results demonstrated that the established RPR-LFD assay is specific, sensitive and reliable, and could be applied in early clinical diagnosis of EHDV and PALV. Conclusions This study highlights the development and application of the RPA-LFD assay in the co-detection of EHDV and PALV for the first time. The assay could be used as a potential optional rapid, reliable, sensitive and low-cost method for field diagnosis of EHDV and PALV. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02977-9.
Collapse
Affiliation(s)
- Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhen-Xing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Zhong-Yan Hu
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| | - De-Fang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| |
Collapse
|
7
|
Yanase T, Murota K, Hayama Y. Endemic and Emerging Arboviruses in Domestic Ruminants in East Asia. Front Vet Sci 2020; 7:168. [PMID: 32318588 PMCID: PMC7154088 DOI: 10.3389/fvets.2020.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Epizootic congenital abnormalities caused by Akabane, Aino, and Chuzan viruses have damaged the reproduction of domestic ruminants in East Asia for many years. In the past, large outbreaks of febrile illness related to bovine ephemeral fever and Ibaraki viruses severely affected the cattle industry in that region. In recent years, vaccines against these viruses have reduced the occurrence of diseases, although the viruses are still circulating and have occasionally caused sporadic and small-scaled epidemics. Over a long-term monitoring period, many arboviruses other than the above-mentioned viruses have been isolated from cattle and Culicoides biting midges in Japan. Several novel arboviruses that may infect ruminants (e.g., mosquito- and tick-borne arboviruses) were recently reported in mainland China based on extensive surveillance. It is noteworthy that some are suspected of being associated with cattle diseases. Malformed calves exposed to an intrauterine infection with orthobunyaviruses (e.g., Peaton and Shamonda viruses) have been observed. Epizootic hemorrhagic disease virus serotype 6 caused a sudden outbreak of hemorrhagic disease in cattle in Japan. Unfortunately, the pathogenicity of many other viruses in ruminants has been uncertain, although these viruses potentially affect livestock production. As global transportation grows, the risk of an accidental incursion of arboviruses is likely to increase in previously non-endemic areas. Global warming will also certainly affect the distribution and active period of vectors, and thus the range of virus spreads will expand to higher-latitude regions. To prevent anticipated damages to the livestock industry, the monitoring system for arboviral circulation and incursion should be strengthened; moreover, the sharing of information and preventive strategies will be essential in East Asia.
Collapse
Affiliation(s)
- Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| |
Collapse
|
8
|
Tomazatos A, Marschang RE, Maranda I, Baum H, Bialonski A, Spînu M, Lühken R, Schmidt-Chanasit J, Cadar D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes ( Natrix natrix). Viruses 2020; 12:v12020243. [PMID: 32098186 PMCID: PMC7077223 DOI: 10.3390/v12020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
The discovery and characterization of novel arthropod-borne viruses provide valuable information on their genetic diversity, ecology, evolution and potential to threaten animal or public health. Arbovirus surveillance is not conducted regularly in Romania, being particularly very scarce in the remote and diverse areas like the Danube Delta. Here we describe the detection and genetic characterization of a novel orbivirus (Reoviridae: Orbivirus) designated as Letea virus, which was found in grass snakes (Natrix natrix) during a metagenomic and metatranscriptomic survey conducted between 2014 and 2017. This virus is the first orbivirus discovered in reptiles. Phylogenetic analyses placed Letea virus as a highly divergent species in the Culicoides-/sand fly-borne orbivirus clade. Gene reassortment and intragenic recombination were detected in the majority of the nine Letea virus strains obtained, implying that these mechanisms play important roles in the evolution and diversification of the virus. However, the screening of arthropods, including Culicoides biting midges collected within the same surveillance program, tested negative for Letea virus infection and could not confirm the arthropod vector of the virus. The study provided complete genome sequences for nine Letea virus strains and new information about orbivirus diversity, host range, ecology and evolution. The phylogenetic associations warrant further screening of arthropods, as well as sustained surveillance efforts for elucidation of Letea virus natural cycle and possible implications for animal and human health.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Rachel E. Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany;
| | - Iulia Maranda
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Heike Baum
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Alexandra Bialonski
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Marina Spînu
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Correspondence:
| |
Collapse
|
9
|
Rajko-Nenow P, Christodoulou V, Thurston W, Ropiak HM, Savva S, Brown H, Qureshi M, Alvanitopoulos K, Gubbins S, Flannery J, Batten C. Origin of Bluetongue Virus Serotype 8 Outbreak in Cyprus, September 2016. Viruses 2020; 12:E96. [PMID: 31947695 PMCID: PMC7019704 DOI: 10.3390/v12010096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
In September 2016, clinical signs, indicative of bluetongue, were observed in sheep in Cyprus. Bluetongue virus serotype 8 (BTV-8) was detected in sheep, indicating the first incursion of this serotype into Cyprus. Following virus propagation, Nextera XT DNA libraries were sequenced on the MiSeq instrument. Full-genome sequences were obtained for five isolates CYP2016/01-05 and the percent of nucleotide sequence (% nt) identity between them ranged from 99.92% to 99.95%, which corresponded to a few (2-5) amino acid changes. Based on the complete coding sequence, the Israeli ISR2008/13 (98.42-98.45%) was recognised as the closest relative to CYP2016/01-05. However, the phylogenetic reconstruction of CYP2016/01-05 revealed that the possibility of reassortment in several segments: 4, 7, 9 and 10. Based on the available sequencing data, the incursion BTV-8 into Cyprus most likely occurred from the neighbouring countries (e.g., Israel, Lebanon, Syria, or Jordan), where multiple BTV serotypes were co-circulating rather than from Europe (e.g., France) where a single BTV-8 serotype was dominant. Supporting this hypothesis, atmospheric dispersion modelling identified wind-transport events during July-September that could have allowed the introduction of BTV-8 infected midges from Lebanon, Syria or Israel coastlines into the Larnaca region of Cyprus.
Collapse
Affiliation(s)
- Paulina Rajko-Nenow
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | | | | | - Honorata M. Ropiak
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Savvas Savva
- Veterinary Services of Cyprus, Nicosia 1417, Cyprus; (V.C.); (S.S.); (K.A.)
| | - Hannah Brown
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Mehnaz Qureshi
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | | | - Simon Gubbins
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - John Flannery
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Carrie Batten
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| |
Collapse
|