1
|
Zhang W, Li Q, Yi D, Zheng R, Liu G, Liu Q, Guo S, Zhao J, Wang J, Ma L, Ding J, Zhou R, Ren Y, Sun T, Zhang A, Li X, Zhang Y, Cen S. Novel virulence determinants in VP1 regulate the assembly of enterovirus-A71. J Virol 2024; 98:e0165524. [PMID: 39535185 DOI: 10.1128/jvi.01655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Enterovirus-A71 (EV-A71) is the second most common causative agent after coxsackievirus A16 of hand, foot, and mouth disease. The capsids of EV-A71 consist of 60 copies of each of the four viral structural proteins (VP1-VP4). VP1 is highly exposed and surface accessible, playing a central role in virus particle assembly, attachment, and entry. To gain insight into the role of highly conserved residues at positions 75, 78, and 88 in the capsid protein VP1 in these processes, an alanine-scanning analysis was performed using an infectious cDNA clone of EV-A71. Our study revealed that the substitutions of VP1-T75A, VP1-T78A, and VP1-G88A could affect the assembly of the virus capsid proteins, resulting in the production of abnormal virions with reduced infectivity. Specifically, the substitution of VP1-T75A affected the maturation cleavage of the VP0 precursor, leading to deficiencies in binding to receptor scavenger receptor class B2 (SCARB2), viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, a significant reduction in virion-associated genomic RNA was observed, suggesting that more noninfectious empty particles were produced during viral assembly. Interestingly, the VP1-T75A variant showed weak replication in cell cultures but demonstrated increased virulence in BALB/c neonatal mice, which might be due to the difference in viral receptors among mammalian species. Taken together, our data revealed the important role of the highly conserved residues T75, T78, and G88 in VP1 protein in the infectivity of EV-A71. Characterizing these novel determinants of EV-A71 virulence would contribute to rationally developing effective treatments and broadly protective vaccine candidates. IMPORTANCE EV-A71 causes hand, foot, and mouth disease in children. In this study, we discovered three highly conserved residues at positions 75, 78, and 88 of the capsid protein VP1 as the potential virulence determinants of EV-A71, which can influence viral replication by regulating the assembly of EV-A71. Mechanistic studies revealed that VP1-T75A could affect the maturation cleavage of the VP0 precursor, resulting in deficiencies in binding to the receptor SCARB2, viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, more noninfectious empty particles were produced during viral assembly. The discovery of these novel determinants of EV-A71 virulence will promote the study of the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Guihua Liu
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongcheng Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Liu L, Tang Y, Zhang L, Huang P, Li X, Xiao Y, Mao D, Liu L, Xiong J. The molecular mechanisms by which the NLRP3 inflammasome regulates blood-brain barrier permeability following cryptococcal meningitis. Heliyon 2024; 10:e39653. [PMID: 39687132 PMCID: PMC11647797 DOI: 10.1016/j.heliyon.2024.e39653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Objective To investigate the mechanism underlying the regulation of blood-brain barrier permeability changes during cryptococcal meningitis by NLRP3 and Vimentin. Methods Sprague-Dawley rats were treated with WT Cryptococcus neoformans (Cn) or CPS1-/- Cn. Neuronal apoptosis was assessed using TUNEL staining, and pathological changes were observed using electron microscopy and HE staining. The expressions of NLRP3, Vimentin, and NF-κB in the cerebral cortex and human brain microvascular endothelial cells (HBMECs) were examined through Western blot and qRT-PCR. siNLRP3 and siVimentin were separately transfected into HBMECs, the expressions of specific factors were assessed. NF-κB and Vimentin levels were detected through immunofluorescence, apoptosis was measured using flow cytometry, and changes in the optical density (OD) of HRP were determined using ELISA. Results The expressions of NLRP3, Vimentin, and NF-κB were upregulated following intervention with WT Cn in vivo and in vitro. Electron microscopy revealed loose nuclear membranes in neurons and increased apoptosis in the cerebral cortex and hippocampus induced by WT Cn, accompanied by a reduction in the OD of HRP in vitro. siNLRP3 decreased the expressions of Vimentin, nuclear NF-κB, and β-Tubulin in HBMECs, while siVimentin downregulated total NLRP3 and nuclear NF-κB levels. Both siNLRP3 and siVimentin reduced cell apoptosis after WT Cn infection. HBMECs displayed a reduced monolayer permeability to HRP and improved cell structure arrangement. Conclusion Vimentin and the NLRP3 inflammasome are both implicated in the pathological process of cryptococcal meningitis. An interaction between Vimentin and the NLRP3 inflammasome is evident, likely mediated through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xingfang Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Pediatric Neurology, Patientren's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
3
|
Hu L, Zhou L, Wang P, Maimaiti H, Lu Y. Molecular characteristics of a coxsackievirus A12 strain in Zhejiang of China, 2019. Virol J 2022; 19:160. [PMID: 36224635 PMCID: PMC9555000 DOI: 10.1186/s12985-022-01892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus A (EV-A), such as enterovirus A71 (EV-A71), generally causes hand, foot, and mouth disease (HFMD). However, limited studies focused on uncommon enterovirus serotypes such as coxsackievirus A12 (CV-A12). This study aimed to provide evidence to determine the molecular characteristics of a CV-A12 strain isolated in Zhejiang province, China. Methods In routine surveillance of HFMD, we identified a child case with CV-A12 infection in 2019 in Zhejiang province, China. Enterovirus was examined by using real-time reverse transcription-PCR (qRT-PCR). A partial VP1 sequence was amplified to determine the serotype, and then a full-length CV-A12 genome was sequenced. Nucleotide and amino acid similarity was calculated with those CV-A12 strains available in GenBank. Recombination was detected using RDP 4 and SimPlot. Furthermore, phylogenetic analysis was conducted by using BEAST 1.10, and protein modeling was performed with I-TASSER webserver. Results A full-length CV-A12 genome PJ201984 was isolated in a Chinese child with HFMD. The similarities with complete coding sequences of the CV-A12 strains in GenBank ranged between 79.3–100% (nucleotide) and 94.4–100% (amino acid), whereas it was 88.7–100.0% (nucleotide) and 97.2–100% (amino acid) when excluding the CV-A12 prototype strain Texas-12. In PJ201984, amino acid variations were more divergent in P2 and P3 regions than those in P1; the majority of those variations in VP1 (13/15) and VP4 (7/8) were similar to those documented in recently isolated CV-A12 strains in China. Furthermore, recombination was identified in P2 region, which involved a CV-A5 strain collected in China. Phylogenetic analysis revealed that PJ201984 clustered together with multiple CV-A12 strains isolated in China and the Netherlands during 2013–2018, as compared to another cluster consisting of CV-A12 strains in China and France during 2009–2015. Additionally, protein models of VP1 and VP4 in PJ201984 were well predicted to be similar to VP1 protein of EV-A71 and VP4 protein of coxsackievirus A21, respectively. Conclusions The full-length CV-A12 genome was characterized to have common recombination in P2 region and be phylogenetically related to those CV-A12 strains isolated in recent years, suggesting a continual spread in China. It warrants strengthening the routine surveillance for uncommon enterovirus serotypes, particularly on possible recombination and variation. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01892-1.
Collapse
Affiliation(s)
- Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Pingping Wang
- Pujiang Center for Disease Control and Prevention, Jinhua, 321000, Zhejiang, China
| | - Hairenguli Maimaiti
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Yang X, Chen J, Lu Z, Huang S, Zhang S, Cai J, Zhou Y, Cao G, Yu J, Qin Z, Zhao W, Zhang B, Zhu L. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front Microbiol 2022; 13:961942. [PMID: 36246276 PMCID: PMC9554258 DOI: 10.3389/fmicb.2022.961942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD), which is an infectious disease that endangers children’s health. However, the pathogenic mechanisms underlying these severe clinical and pathological features remain incompletely understood. Metabolism and stress are known to play critical roles in multiple stages of the replication of viruses. Lipid metabolism and ER stress is an important characterization post viral infection. EV-A71 infection alters the perturbations of intracellular lipid homeostasis and induces ER stress. The characterizations induced by viral infections are essential for optimal virus replication and may be potential antiviral targets. In this study, we found that the addition of the chemical drug of ER stress, PKR IN, an inhibitor, or Tunicamycin, an activator, could significantly reduce viral replication with the decrease of lipid. The replication of viruses was reduced by Chemical reagent TOFA, an inhibitor of acetyl-CoA carboxylase (ACC) or C75, an inhibitor of fatty acid synthase (FASN), while enhanced by oleic acid (OA), which is a kind of exogenous supplement of triacylglycerol. The pharmacochemical reagent of carnitine palmitoyltransferase 1 (CPT1) called Etomoxir could knock down CPT1 to induce EV-A71 replication to decrease. This suggests that lipid, rather than ER stress, is the main factor affecting EV-A71 replication. In conclusion, this study revealed that it is the β-oxidation of lipid that plays a core role, not ER stress, which is only a concomitant change without restrictive effect, on virus replication.
Collapse
Affiliation(s)
- Xiuwen Yang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayi Chen
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shihao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jintai Cai
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yezhen Zhou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guanhua Cao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiran Qin
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhao,
| | - Bao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Bao Zhang,
| | - Li Zhu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Li Zhu,
| |
Collapse
|
5
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
6
|
Yu J, Li X, Zhou D, Liu X, He X, Huang SH, Wu Q, Zhu L, Yu L, Yao J, Zhang B, Zhao W. Vimentin Inhibits Dengue Virus Type 2 Invasion of the Blood-Brain Barrier. Front Cell Infect Microbiol 2022; 12:868407. [PMID: 35433510 PMCID: PMC9005901 DOI: 10.3389/fcimb.2022.868407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) causes dengue fever, which is prevalent in the tropical and subtropical regions, and in recent years, has resulted in several major epidemics. Vimentin, a cytoskeletal component involved in DENV infection, is significantly reorganized during infection. However, the mechanism underlying the association between DENV infection and vimentin is still poorly understood. We generated vimentin-knockout (Vim-KO) human brain microvascular endothelial cells (HBMECs) and a Vim-KO SV129 suckling mouse model, combining the dynamic vimentin changes observed in vitro and differences in disease course in vivo, to clarify the role of vimentin in DENV-2 infection. We found that the phosphorylation and solubility of vimentin changed dynamically during DENV-2 infection of HBMECs, suggesting the regulation of vimentin by DENV-2 infection. The similar trends observed in the phosphorylation and solubility of vimentin showed that these characteristics are related. Compared with that in control cells, the DENV-2 viral load was significantly increased in Vim-KO HBMECs, and after DENV-2 infection, Vim-KO SV129 mice displayed more severe disease signs than wild-type SV129 mice, as well as higher viral loads in their serum and brain tissue, demonstrating that vimentin can inhibit DENV-2 infection. Moreover, Vim-KO SV129 mice had more disordered cerebral cortical nerve cells, confirming that Vim-KO mice were more susceptible to DENV-2 infection, which causes severe brain damage. The findings of our study help clarify the mechanism by which vimentin inhibits DENV-2 infection and provides guidance for antiviral treatment strategies for DENV infections.
Collapse
Affiliation(s)
- Jianhai Yu
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xujuan Li
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dongrui Zhou
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuling Liu
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoen He
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Saban Research Institute of Children’s Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA, United States
| | - Qinghua Wu
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Zhu
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Linzhong Yu
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinxiu Yao
- Department of Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Bao Zhang
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhao, ; Bao Zhang,
| | - Wei Zhao
- Biological Safety Laboratory of Level 3 (BSL-3) Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhao, ; Bao Zhang,
| |
Collapse
|
7
|
Carse S, Lang D, Katz AA, Schäfer G. Exogenous Vimentin Supplementation Transiently Affects Early Steps during HPV16 Pseudovirus Infection. Viruses 2021; 13:v13122471. [PMID: 34960740 PMCID: PMC8703489 DOI: 10.3390/v13122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating the early steps in oncogenic Human Papillomavirus (HPV) infection has great cancer-preventative potential, as this virus is the etiological agent of virtually all cervical cancer cases and is associated with many other anogenital and oropharyngeal cancers. Previous work from our laboratory has identified cell-surface-expressed vimentin as a novel HPV16 pseudovirus (HPV16-PsVs)-binding molecule modulating its infectious potential. To further explore its mode of inhibiting HPV16-PsVs internalisation, we supplemented it with exogenous recombinant human vimentin and show that only the globular form of the molecule (as opposed to the filamentous form) inhibited HPV16-PsVs internalisation in vitro. Further, this inhibitory effect was only transient and not sustained over prolonged incubation times, as demonstrated in vitro and in vivo, possibly due to full-entry molecule engagement by the virions once saturation levels have been reached. The vimentin-mediated delay of HPV16-PsVs internalisation could be narrowed down to affecting multiple steps during the virus’ interaction with the host cell and was found to affect both heparan sulphate proteoglycan (HSPG) binding as well as the subsequent entry receptor complex engagement. Interestingly, decreased pseudovirus internalisation (but not infection) in the presence of vimentin was also demonstrated for oncogenic HPV types 18, 31 and 45. Together, these data demonstrate the potential of vimentin as a modulator of HPV infection which can be used as a tool to study early mechanisms in infectious internalisation. However, further refinement is needed with regard to vimentin’s stabilisation and formulation before its development as an alternative prophylactic means.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dirk Lang
- Department of Human Biology, Division of Cell Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Arieh A. Katz
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- SA-MRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-404-7688
| |
Collapse
|
8
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
9
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|
10
|
Sun H, Gao M, Cui D. Molecular characteristics of the VP1 region of enterovirus 71 strains in China. Gut Pathog 2020; 12:38. [PMID: 32818043 PMCID: PMC7427758 DOI: 10.1186/s13099-020-00377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background Enterovirus 71 (EV71) is the most commonly implicated causative agent of severe outbreaks of paediatric hand, foot, and mouth disease (HFMD).VP1 protein, a capsid protein of EV71, is responsible for the genotype of the virus and is essential for vaccine development and effectiveness. However, the genotypes of EV71 isolates in China are still not completely clear. Methods The VP1 gene sequences of 3712 EV71 virus strains from China, excluding repetitive sequences and 30 known EV71 genotypes as reference strains, between 1986 and 2019 were obtained from GenBank. Phylogenetic tree, amino acid homology, genetic variation and genotype analyses of the EV71VP1 protein were performed with MEGA 6.0 software. Results The amino acid identity was found to be 88.33%–100% among the 3712 EV71 strains, 93.47%–100% compared with vaccine strain H07, and 93.04%–100% compared with vaccine strains FY7VP5 or FY-23 K-B. Since 2000, the prevalent strains of EV71 were mainly of the C4 genotype. Among these, the C4a subgenotype was predominant, followed by the C4b subgenotype; other subgenotypes appeared sporadically between 2005 and 2018 in mainland China. The B4 genotype was the main genotype in Taiwan, and the epidemic strains were constantly changing. Some amino acid variations in VP1 of EV71 occurred with high frequencies, including A289T (20.99%), H22Q (16.49%), A293S (15.95%), S283T (15.11%), V249I (7.76%), N31D (7.25%), and E98K (6.65%). Conclusion The C4 genotype of EV71 in China matches the vaccine and should effectively control EV71. However, the efficacy of the vaccine is partially affected by the continuous change in epidemic strains in Taiwan. These results suggest that the genetic characteristics of the EV71-VP1 region should be continuously monitored, which is critical for epidemic control and vaccine design to prevent EV71 infection in children.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, 312000 Zhejiang China
| | - Min Gao
- Department of Laboratory Medicine, Huzhou Central Hospital, Huzhou, 313003 Zhejiang China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
12
|
Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 2020; 12:v12040414. [PMID: 32276428 PMCID: PMC7232526 DOI: 10.3390/v12040414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD). HFMD caused by EV-A71 seriously endangers children’s health. Although autophagy is an important antiviral defense mechanism, some viruses have evolved strategies to utilize autophagy to promote self-replication. EV-A71 can utilize autophagy vesicles as replication scaffolds, indicating that EV-A71 infection is closely related to its autophagy induction mechanism. VP1, a structural protein of EV-A71, has been reported to induce autophagy, but the underlying mechanism is still unclear. In this study, we found that the C-terminus (aa 251–297) of VP1 induces autophagy. Mass spectrometry analysis suggested that prohibitin 2 (PHB2) interacts with the C-terminus of the EV-A71 VP1 protein, and this was further verified by coimmunoprecipitation assays. After PHB2 knockdown, EV-A71 replication, viral particle release, and viral protein synthesis were reduced, and autophagy was inhibited. The results suggest that PHB2 interaction with VP1 is essential for induction of autophagy and the infectivity of EV-A71. Furthermore, we confirmed that EV-A71 induced complete autophagy that required autolysosomal acidification, thus affecting EV-A71 infection. In summary, this study revealed that the host protein PHB2 is involved in an autophagy mechanism during EV-A71 infection.
Collapse
|