1
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|
2
|
Bluetongue Virus Infections in Cattle Herds of Manabí Province of Ecuador. Pathogens 2021; 10:pathogens10111445. [PMID: 34832601 PMCID: PMC8623054 DOI: 10.3390/pathogens10111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bluetongue (BT) is a viral disease transmitted by Culicoides (Diptera: Ceratopogonidae) to domestic and wild ruminants. Infections in cattle are mainly subclinical, but severe necrotic and hemorrhagic illness and death may occur depending on the strain of the virus and other factors; cattle act as a reservoir for the virus. Although the Ecuadorian coast has climatic conditions that favor the presence of the vector, there are few serologic or virologic BTV studies available. Manabí is a coastal province in which livestock farming is mostly implemented in the northern part. We conducted two studies to assess, for the first time, the presence of active BTV infections in Manabí province. We collected 430 serum samples from 38 randomly selected farms between March and July 2019 to perform BTV competitive ELISA. In addition, six seropositive farms were selected to place eight sentinel BTV-naive calves. All these calves were blood sampled and the presence of BTV RNA and antibodies was tested for by RT-PCR and competitive ELISA, respectively, once a week for 6-8 weeks until seroconversion was evidenced. A high individual seroprevalence (99%) was obtained, and all investigated farms had BTV seropositive animals. All sentinel calves became BTV viremic and seroconverted. The first viremia appeared after 2-5 weeks from arrival at the farm; they seroconverted 1-3 weeks later. We demonstrate for the first time that there is a high level of BTV circulation north of Manabí, with active infections on these farms. Integrated control strategies such as hygienic measures on farms to reduce midge populations would be advisable for the owners as mitigation measures.
Collapse
|
3
|
Bamouh Z, Es-Sadeqy Y, Safini N, Douieb L, Omari Tadlaoui K, Martínez RV, García MA, Fassi-Fihri O, Elharrak M. Safety and efficacy of a Bluetongue inactivated vaccine (serotypes 1 and 4) in sheep. Vet Microbiol 2021; 261:109212. [PMID: 34450450 DOI: 10.1016/j.vetmic.2021.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
A new inactivated vaccine against Bluetongue virus (BTV) serotypes 1 and 4, was developed from field isolates. Safety and efficacy of the vaccine were evaluated in sheep by serological monitoring and virus nucleic acid detection after experimental infection of vaccinated animals. Seroconversion was observed in vaccinated animals at day 14 post vaccination (pv) with neutralizing antibody titer of 1.9 and 1.8 for serotypes 1 and 4, respectively. The titer increase significantly after the booster reaching 2.7 and persist one year >1.5 for both serotypes. After challenge with virulent isolates, vireamia was recorded in control animals, as evident by q-PCR with threshold cycles (Ct) ranging from 24 to 31 and peaked at day 10 post challenge, while no vireamia was detected in vaccinated animals. Vaccinated sheep were fully protected against the disease and infection.
Collapse
Affiliation(s)
- Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Y Es-Sadeqy
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - N Safini
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - L Douieb
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - K Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | | | - M Agüero García
- Laboratorio Central de Veterinaria-Animal Health, Algete, Madrid, Spain.
| | - O Fassi-Fihri
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
4
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|