1
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Shi B, Yang G, Xiao Y, Qian K, Shao H, Xu M, Qin A. Long-Term Protection against Virulent Newcastle Disease Virus (NDV) in Chickens Immunized with a Single Dose of Recombinant Turkey Herpesvirus Expressing NDV F Protein. Vaccines (Basel) 2024; 12:604. [PMID: 38932333 PMCID: PMC11209589 DOI: 10.3390/vaccines12060604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Newcastle disease (ND) is a significant infectious disease in poultry, causing substantial economic losses in developing countries. To control ND, chickens must be vaccinated multiple times a year. In order to develop an improved vaccine that provides long-term protection, the F gene from genotype VII NDV was inserted into the herpesvirus of turkey (HVT) vaccine virus using CRISPR/Cas9-mediated NHEJ repair and Cre/LoxP technology. The immunogenicity and protective efficacy of the resulting recombinant vaccines were evaluated through antibody assays and virus challenge experiments. Two recombinant vaccines, rHVT-005/006-F and rHVT-US2-F, were generated, both exhibiting growth rates comparable with those of HVT in vitro and consistently expressing the F protein. One-day-old specific pathogen-free (SPF) chickens immunized with 2000 PFU/bird of either rHVT-005/006-F or rHVT-US2-F developed robust humoral immunity and were completely protected against challenge with the NDV F48E8 strain at 4 weeks post-vaccination (wpv). Furthermore, a single dose of these vaccines provided sustained protection for at least 52 wpv. Our study identifies rHVT-005/006-F and rHVT-US2-F as promising ND vaccine candidates, offering long-term protection with a single administration. Moreover, HVT-005/006 demonstrates promise for accommodating additional foreign genes, facilitating the construction of multiplex vaccines.
Collapse
Affiliation(s)
- Bin Shi
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Guifu Yang
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Yue Xiao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Moru Xu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou 225009, China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou 225009, China
| |
Collapse
|
3
|
Comes JDG, Doets K, Zegers T, Kessler M, Slits I, Ballesteros NA, van de Weem NMP, Pouwels H, van Oers MM, van Hulten MCW, Langereis M, Pijlman GP. Evaluation of bird-adapted self-amplifying mRNA vaccine formulations in chickens. Vaccine 2024; 42:2895-2908. [PMID: 38521674 DOI: 10.1016/j.vaccine.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Each year, millions of poultry succumb to highly pathogenic avian influenza A virus (AIV) and infectious bursal disease virus (IBDV) infections. Conventional vaccines based on inactivated or live-attenuated viruses are useful tools for disease prevention and control, yet, they often fall short in terms of safety, efficacy, and development times. Therefore, versatile vaccine platforms are crucial to protect poultry from emerging viral pathogens. Self-amplifying (replicon) RNA vaccines offer a well-defined and scalable option for the protection of both animals and humans. The best-studied replicon platform, based on the Venezuelan equine encephalitis virus (VEEV; family Togaviridae) TC-83 vaccine strain, however, displays limited efficacy in poultry, warranting the exploration of alternative, avian-adapted, replicon platforms. In this study, we engineered two Tembusu virus (TMUV; family Flaviviridae) replicons encoding varying capsid gene lengths and compared these to the benchmark VEEV replicon in vitro. The TMUV replicon system exhibited a robust and prolonged transgene expression compared to the VEEV replicon system in both avian and mammalian cells. Moreover, the TMUV replicon induced a lesser cytopathic effect compared to the VEEV replicon RNA in vitro. DNA-launched versions of the TMUV and VEEV replicons (DREP) were also developed. The replicons successfully expressed the AIV haemagglutinin (HA) glycoproteins and the IBDV capsid protein (pVP2). To assess the immune responses elicited by the TMUV replicon system in chickens, a prime-boost vaccination trial was conducted using lipid nanoparticle (LNP)-formulated replicon RNA and DREP encoding the viral (glyco)proteins of AIV or IBDV. Both TMUV and VEEV replicon RNAs were unable to induce a humoral response against AIV. However, TMUV replicon RNA induced IBDV-specific seroconversion in vaccinated chickens, in contrast to VEEV replicon RNA, which showed no significant humoral response. In both AIV and IBDV immunization studies, VEEV DREP generated the highest (neutralizing) antibody responses, which underscores the potential for self-amplifying mRNA vaccine technology to combat emerging poultry diseases.
Collapse
Affiliation(s)
- Jerome D G Comes
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Kristel Doets
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands; MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Thijmen Zegers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Merel Kessler
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | - Irene Slits
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | | | | | - Henk Pouwels
- MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands
| | | | - Martijn Langereis
- MSD Animal Health, Wim de Körverstraat 35, Boxmeer 5831AN, the Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708PB, the Netherlands.
| |
Collapse
|
4
|
Abdallah Mouhamed A, Lee J, Kim DH, Song CS. Comparative protective efficacy of a newly generated live recombinant thermostable highly attenuated vaccine rK148/GVII-F using a single regimen against lethal NDV GVII.1.1. Avian Pathol 2024; 53:14-32. [PMID: 38009206 DOI: 10.1080/03079457.2023.2263395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/28/2023]
Abstract
RESEARCH HIGHLIGHTS A thermostable, safe, and effective NDV GVII recombinant vaccine was generated.Fusion gene replacement with GVII did not affect GI K148/08 virus thermostability.Strain rK148/GVII-F provided adequate protection against a lethal NDV challenge.Oropharyngeal shedding was significantly reduced on post-challenge days 5 and 7.
Collapse
Affiliation(s)
- Amal Abdallah Mouhamed
- Department of Avian Diseases, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jiho Lee
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Chang-Seon Song
- Department of Avian Disease and Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co. Ltd., Seoul, Republic of Korea
| |
Collapse
|