1
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Sharma D, Chakraborty S. RNA editing sites and triplet usage in exomes of bat RNA virus genomes of the family Paramyxoviridae. Microb Pathog 2024; 194:106796. [PMID: 39025379 DOI: 10.1016/j.micpath.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
3
|
Hsu CW, Hsu HY, Chen CH, Chao M. Unbranched rod-like RNA is required for RNA editing of hepatitis delta virus genotype 2 and genotype 4. Virus Res 2023; 338:199239. [PMID: 37827303 PMCID: PMC10590747 DOI: 10.1016/j.virusres.2023.199239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
RNA editing of the hepatitis delta virus (HDV) is essential for generating the large delta antigen, which is crucial for virion assembly. In HDV genotype 1 (HDV-1), editing occurs within the context of the unbranched rod-like structure characteristic of HDV RNA, while RNA editing in HDV-3 requires a branched double-hairpin structure. The regulation of RNA editing in HDV-2 and HDV-4 remains uncertain. Based on predictions of the unbranched rod-like RNA structures of HDV-2 and HDV-4, the editing site occurs as an A.C mismatch pair, surrounded by four base pairs upstream and two base pairs downstream of the editing site, respectively. To investigate HDV-2 and HDV-4 RNA editing, cultured cells were transfected with non-replicating editing reporters carrying wild-type sequences or specific mutations. The results revealed that the editing rates observed for wild-type HDV-2 and HDV-4 were fairly similar, albeit lower than that of HDV-1. Like HDV-1, both HDV-2 and HDV-4 showed a reduction in editing rate when the A.C mismatch pair and the immediately upstream base-paired region were disturbed. Notably, extending the downstream base-paired region from two to three or four (forming a structure identical to that of HDV-1) base pairs increased editing rate. Furthermore, we presented novel evidence that indicates the importance of the first bulge's size, located upstream of the editing site, and the base-pairing length within 7-13 and 28-39 nucleotides downstream of the editing site in influencing the HDV-4 editing rate. To summarize, our analyses suggest that the unbranched rod-like structures surrounding the editing site of HDV-2 and HDV-4 play a crucial role in regulating their RNA editing rates.
Collapse
Affiliation(s)
- Chao-Wei Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Hsueh-Ying Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Mei Chao
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan; Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan.
| |
Collapse
|
4
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021; 70:1782-1794. [PMID: 34103404 PMCID: PMC8355886 DOI: 10.1136/gutjnl-2020-323888] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Dziri S, Rodriguez C, Gerber A, Brichler S, Alloui C, Roulot D, Dény P, Pawlotsky JM, Gordien E, Le Gal F. Variable In Vivo Hepatitis D Virus (HDV) RNA Editing Rates According to the HDV Genotype. Viruses 2021; 13:v13081572. [PMID: 34452437 PMCID: PMC8402866 DOI: 10.3390/v13081572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.
Collapse
Affiliation(s)
- Samira Dziri
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Christophe Rodriguez
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Athenaïs Gerber
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Ségolène Brichler
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Chakib Alloui
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Dominique Roulot
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Unité d’hépatologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Sorbonne-Paris-Cité, 93000 Bobigny, France
| | - Paul Dény
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-UMR CNRS 5286, 69001 Lyon, France
| | - Jean Michel Pawlotsky
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Emmanuel Gordien
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Frédéric Le Gal
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Correspondence:
| |
Collapse
|
8
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
9
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|