1
|
Silva-Valencia S, Prol FV, Rodrigo I, Lisón P, Belda-Palazón B. TOR Inhibition Enhances Autophagic Flux and Immune Response in Tomato Plants Against PSTVd Infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14606. [PMID: 39544013 DOI: 10.1111/ppl.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Viroids are small, non-coding RNA pathogens known for their ability to cause severe plant diseases. Despite their simple structure, viroids like Potato Spindle Tuber Viroid (PSTVd) can interfere with plant cellular processes, including transcriptional and post-transcriptional mechanisms, impacting plant growth and yield. In this study, we have investigated the role of the Target Of Rapamycin (TOR) signaling pathway in modulating viroid pathogenesis in tomato plants infected with PSTVd. Our findings reveal that PSTVd infection induces the accumulation of the selective autophagy receptor NBR1, potentially inhibiting autophagic flux. Pharmacological inhibition of TOR with AZD8055 mitigated PSTVd symptomatology by reducing viroid accumulation. Furthermore, TOR inhibition promoted the recovery of autophagic flux through NBR1. It primed the plant defense response, as evidenced by enhanced expression of the defense-related gene PR1b and S5H, a gene involved in the salicylic acid catabolism. These results suggest a novel role for TOR in regulating viroid-induced pathogenesis and highlight the potential of TOR inhibitors as tools for enhancing plant resistance against viroid infections.
Collapse
Affiliation(s)
- Samanta Silva-Valencia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
- Present address: Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Francisco Vázquez Prol
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Joubert M, van den Berg N, Theron J, Swart V. Global transcriptomic analysis in avocado nursery trees reveals differential gene expression during asymptomatic infection by avocado sunblotch viroid (ASBVd). Virus Res 2024; 339:199263. [PMID: 37940077 PMCID: PMC10682261 DOI: 10.1016/j.virusres.2023.199263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Avocado sunblotch viroid (ASBVd) is the type species of the family Avsunviroidae and the causal agent of avocado sunblotch disease. The disease is characterised by the presence of chlorotic lesions on avocado fruit, leaves and/or stems. Infected trees may remain without chlorosis for extended periods of time, though distorted growth and reduced yield has been observed in these cases. The molecular effects of ASBVd on avocado, and members of the Avsunviroidae on their respective hosts in general, remain poorly understood. Host global transcriptomic studies within the family Pospiviroidae have identified several host pathways that are affected during these plant-pathogen interactions. In this study, we used RNA sequencing to investigate host gene expression in asymptomatic avocado nursery trees infected with ASBVd. Transcriptome data showed that 631 genes were differentially expressed, 63 % of which were upregulated during infection. Plant defence responses, phytohormone networks, gene expression pathways, secondary metabolism, cellular transport as well as protein modification and degradation were all significantly affected by ASBVd infection. This work represents the first global gene expression study of ASBVd-infected avocado, and the transcriptional reprogramming observed during this asymptomatic infection improves our understanding of the molecular interactions underlying broader avsunviroid-host interactions.
Collapse
Affiliation(s)
- M Joubert
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - N van den Berg
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - J Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - V Swart
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
3
|
Márquez-Molins J, Villalba-Bermell P, Corell-Sierra J, Pallás V, Gomez G. Integrative time-scale and multi-omics analysis of host responses to viroid infection. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37378473 DOI: 10.1111/pce.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Viroids are circular RNAs of minimal complexity compelled to subvert plant-regulatory networks to accomplish their infectious process. Studies focused on the response to viroid-infection have mostly addressed specific regulatory levels and considered specifics infection-times. Thus, much remains to be done to understand the temporal evolution and complex nature of viroid-host interactions. Here we present an integrative analysis of the temporal evolution of the genome-wide alterations in cucumber plants infected with hop stunt viroid (HSVd) by integrating differential host transcriptome, sRNAnome and methylome. Our results support that HSVd promotes the redesign of the cucumber regulatory-pathways predominantly affecting specific regulatory layers at different infection-phases. The initial response was characterised by a reconfiguration of the host-transcriptome by differential exon-usage, followed by a progressive transcriptional downregulation modulated by epigenetic changes. Regarding endogenous small RNAs, the alterations were limited and mainly occurred at the late stage. Significant host-alterations were predominantly related to the downregulation of transcripts involved in plant-defence mechanisms, the restriction of pathogen-movement and the systemic spreading of defence signals. We expect that these data constituting the first comprehensive temporal-map of the plant-regulatory alterations associated with HSVd infection could contribute to elucidate the molecular basis of the yet poorly known host-response to viroid-induced pathogenesis.
Collapse
Affiliation(s)
- Joan Márquez-Molins
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
- Department of Virologia Molecular y Evolutiva de Plantas, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Pascual Villalba-Bermell
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| | - Julia Corell-Sierra
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| | - Vicente Pallás
- Department of Virologia Molecular y Evolutiva de Plantas, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| |
Collapse
|
4
|
Joubert M, van den Berg N, Theron J, Swart V. Transcriptomics Advancement in the Complex Response of Plants to Viroid Infection. Int J Mol Sci 2022; 23:ijms23147677. [PMID: 35887025 PMCID: PMC9318114 DOI: 10.3390/ijms23147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid–host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.
Collapse
Affiliation(s)
- Melissa Joubert
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
5
|
Aviña-Padilla K, Zambada-Moreno O, Herrera-Oropeza GE, Jimenez-Limas MA, Abrahamian P, Hammond RW, Hernández-Rosales M. Insights into the Transcriptional Reprogramming in Tomato Response to PSTVd Variants Using Network Approaches. Int J Mol Sci 2022; 23:5983. [PMID: 35682662 PMCID: PMC9181013 DOI: 10.3390/ijms23115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023] Open
Abstract
Viroids are the smallest pathogens of angiosperms, consisting of non-coding RNAs that cause severe diseases in agronomic crops. Symptoms associated with viroid infection are linked to developmental alterations due to genetic regulation. To understand the global mechanisms of host viroid response, we implemented network approaches to identify master transcription regulators and their differentially expressed targets in tomato infected with mild and severe variants of PSTVd. Our approach integrates root and leaf transcriptomic data, gene regulatory network analysis, and identification of affected biological processes. Our results reveal that specific bHLH, MYB, and ERF transcription factors regulate genes involved in molecular mechanisms underlying critical signaling pathways. Functional enrichment of regulons shows that bHLH-MTRs are linked to metabolism and plant defense, while MYB-MTRs are involved in signaling and hormone-related processes. Strikingly, a member of the bHLH-TF family has a specific potential role as a microprotein involved in the post-translational regulation of hormone signaling events. We found that ERF-MTRs are characteristic of severe symptoms, while ZNF-TF, tf3a-TF, BZIP-TFs, and NAC-TF act as unique MTRs. Altogether, our results lay a foundation for further research on the PSTVd and host genome interaction, providing evidence for identifying potential key genes that influence symptom development in tomato plants.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Octavio Zambada-Moreno
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
| | - Gabriel Emilio Herrera-Oropeza
- Center for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London WC2R 2LS, UK;
| | - Marco A. Jimenez-Limas
- Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Peter Abrahamian
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | - Rosemarie W. Hammond
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | | |
Collapse
|
6
|
Kochetov AV, Pronozin AY, Shatskaya NV, Afonnikov DA, Afanasenko OS. Potato spindle tuber viroid. Vavilovskii Zhurnal Genet Selektsii 2021; 25:269-275. [PMID: 34901723 PMCID: PMC8628614 DOI: 10.18699/vj21.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Viroids belong to a very interesting class of molecules attracting researchers in phytopathology and
molecular evolution. Here we review recent literature data concerning the genetics of Potato spindle tuber viroid
(PSTVd) and the mechanisms related to its pathological effect on the host plants. PSTVd can be transmitted vertically through microspores and macrospores, but not with pollen from another infected plant. The 359 nucleotidelong genomic RNA of PSTVd is highly structured and its 3D-conformation is responsible for interaction with host
cellular factors to mediate replication, transport between tissues during systemic infection and the severity of
pathological symptoms. RNA replication is prone to errors and infected plants contain a population of mutated
forms of the PSTVd genome. Interestingly, at 7 DAI, only 25 % of the newly synthesized RNAs were identical to
the master copy, but this proportion increased to up to 70 % at 14 DAI and remained the same afterwards. PSTVd
infection induces the immune response in host plants. There are PSTVd strains with a severe, a moderate or a mild
pathological effect. Interestingly, viroid replication itself does not necessarily induce strong morphological or
physiological symptoms. In the case of PSTVd, disease symptoms may occur due to RNA-interference, which decreases the expression levels of some important cellular regulatory factors, such as, for example, potato StTCP23
from the gibberellic acid pathway with a role in tuber morphogenesis or tomato FRIGIDA-like protein 3 with an
early flowering phenotype. This association between the small segments of viroid genomic RNAs complementary
to the untranslated regions of cellular mRNAs and disease symptoms provides a way for new resistant cultivars to
be developed by genetic editing. To conclude, viroids provide a unique model to reveal the fundamental features
of living systems, which appeared early in evolution and still remain undiscovered.
Collapse
Affiliation(s)
- A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A Y Pronozin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Shatskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O S Afanasenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
7
|
Hadjieva N, Apostolova E, Baev V, Yahubyan G, Gozmanova M. Transcriptome Analysis Reveals Dynamic Cultivar-Dependent Patterns of Gene Expression in Potato Spindle Tuber Viroid-Infected Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122687. [PMID: 34961158 PMCID: PMC8706270 DOI: 10.3390/plants10122687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Potato spindle tuber viroid (PSTVd) infects various plants. PSTVd pathogenesis is associated with interference with the cellular metabolism and defense signaling pathways via direct interaction with host factors or via the transcriptional or post-transcriptional modulation of gene expression. To better understand host defense mechanisms to PSTVd infection, we analyzed the gene expression in two pepper cultivars, Capsicum annuum Kurtovska kapia (KK) and Djulunska shipka (DS), which exhibit mild symptoms of PSTVd infection. Deep sequencing-based transcriptome analysis revealed differential gene expression upon infection, with some genes displaying contrasting expression patterns in KK and DS plants. More genes were downregulated in DS plants upon infection than in KK plants, which could underlie the more severe symptoms seen in DS plants. Gene ontology enrichment analysis revealed that most of the downregulated differentially expressed genes in both cultivars were enriched in the gene ontology term photosynthesis. The genes upregulated in DS plants fell in the biological process of gene ontology term defense response. We validated the expression of six overlapping differentially expressed genes that are involved in photosynthesis, plant hormone signaling, and defense pathways by quantitative polymerase chain reaction. The observed differences in the responses of the two cultivars to PSTVd infection expand the understanding of the fine-tuning of plant gene expression that is needed to overcome the infection.
Collapse
|
8
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
9
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
10
|
Navarro B, Gisel A, Serra P, Chiumenti M, Di Serio F, Flores R. Degradome Analysis of Tomato and Nicotiana benthamiana Plants Infected with Potato Spindle Tuber Viroid. Int J Mol Sci 2021; 22:3725. [PMID: 33918424 PMCID: PMC8038209 DOI: 10.3390/ijms22073725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are infectious non-coding RNAs that infect plants. During infection, viroid RNAs are targeted by Dicer-like proteins, generating viroid-derived small RNAs (vd-sRNAs) that can guide the sequence specific cleavage of cognate host mRNAs via an RNA silencing mechanism. To assess the involvement of these pathways in pathogenesis associated with nuclear-replicating viroids, high-throughput sequencing of sRNAs and degradome analysis were carried out on tomato and Nicotiana benthamiana plants infected by potato spindle tuber viroid (PSTVd). Both hosts develop similar stunting and leaf curling symptoms when infected by PSTVd, thus allowing comparative analyses. About one hundred tomato mRNAs potentially targeted for degradation by vd-sRNAs were initially identified. However, data from biological replicates and comparisons between mock and infected samples reduced the number of bona fide targets-i.e., those identified with high confidence in two infected biological replicates but not in the mock controls-to only eight mRNAs that encode proteins involved in development, transcription or defense. Somewhat surprisingly, results of RT-qPCR assays revealed that the accumulation of only four of these mRNAs was inhibited in the PSTVd-infected tomato. When these analyses were extended to mock inoculated and PSTVd-infected N. benthamiana plants, a completely different set of potential mRNA targets was identified. The failure to identify homologous mRNA(s) targeted by PSTVd-sRNA suggests that different pathways could be involved in the elicitation of similar symptoms in these two species. Moreover, no significant modifications in the accumulation of miRNAs and in the cleavage of their targeted mRNAs were detected in the infected tomato plants with respect to the mock controls. Taken together, these data suggest that stunting and leaf curling symptoms induced by PSTVd are elicited by a complex plant response involving multiple mechanisms, with RNA silencing being only one of the possible components.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy;
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
| | - Pedro Serra
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Ricardo Flores
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| |
Collapse
|
11
|
Ramon U, Weiss D, Illouz-Eliaz N. Underground gibberellin activity: differential gibberellin response in tomato shoots and roots. THE NEW PHYTOLOGIST 2021; 229:1196-1200. [PMID: 32790883 DOI: 10.1111/nph.16876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Uria Ramon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Natanella Illouz-Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
12
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
13
|
Więsyk A, Lirski M, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Differences in gene expression profiles at the early stage of Solanum lycopersicum infection with mild and severe variants of potato spindle tuber viroid. Virus Res 2020; 286:198090. [PMID: 32634444 DOI: 10.1016/j.virusres.2020.198090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Viroids with small, non-coding circular RNA genome can induce diseases in many plant species. The extend of infection symptoms depends on environmental conditions, viroid strain, and host plant species and cultivar. Pathogen recognition leads to massive transcriptional reprogramming to favor defense responses over normal cellular functions. To better understand the interaction between plant host and potato spindle tuber viroid (PSTVd) variants that differ in their virulence, comparative transcriptomic analysis was performed by an RNA-seq approach. The changes of gene expression were analyzed at the time point when subtle symptoms became visible in plants infected with the severe PSTVd-S23 variant, while those infected with the mild PSTVd-M variant looked like non-infected healthy plants. Over 3000 differentially expressed genes (DEGs) were recognized in both infections, but the majority of them were specific for infection with the severe variant. In both infections recognized DEGs were mainly related to biotic stress, hormone metabolism and signaling, transcription regulation, protein degradation, and transport. The DEGs related to cell cycle and microtubule were uniquely down-regulated only in the PSTVd-S23-infected plants. Similarly, expression of transcription factors from C2C2-GATA and growth-regulating factor (GRF) families was only altered upon infection with the severe variant. Both PSTVd variants triggered plant immune response; however expression of genes encoding crucial factors of this process was markedly more changed in the plants infected with the severe variant than in those with the mild one.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|