1
|
Liu N, Xu Y, Sun L, Li M, Huang J, Hao B. The signal peptide of BmNPV GP64 activates the ERAD pathway to regulate heterogeneous secretory protein expression. Microb Cell Fact 2024; 23:284. [PMID: 39420373 PMCID: PMC11487928 DOI: 10.1186/s12934-024-02534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency. Quantitative analysis demonstrated that SP-mediated secretion was markedly higher compared to controls, albeit with lower total expression levels. Further exploration into SP-mediated ERAD pathway activation showed increased expression of BiP and other ERAD-associated genes (PDI, UFD1, S1P, and ASK1), correlating with higher SP-driven protein expression levels. RNA interference (RNAi) experiments elucidated that knockdown of ERAD-associated genes enhances both the secretion efficiency of SP-guided proteins and the infectivity of BmNPV. Particularly, interference with BiP demonstrated the most pronounced effect on protein secretion enhancement. Viral infection experiments further supported these findings, showing upregulated ERAD-associated genes during BmNPV infection, indicating their role in viral protein processing and infectivity. In conclusion, this study elucidates the complex interplay between SP-mediated protein secretion, ERAD pathway activation, and viral infectivity in BmNPV-infected cells. These insights suggest strategies for optimizing recombinant protein production and viral protein processing in baculovirus expression systems, with potential implications for biotechnological and biomedical applications. Further research could refine our understanding and manipulation of protein secretion pathways in insect cell-based expression systems.
Collapse
Affiliation(s)
- Na Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Luping Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Mengmeng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China.
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
2
|
Hao B, Li J, Sun C, Huang J. Label-free proteomics analysis on the envelope of budded viruses of Bombyx mori nucleopolyhedrovirus harboring differential localized GP64. Virus Genes 2023; 59:260-275. [PMID: 36512182 DOI: 10.1007/s11262-022-01961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 is the key membrane fusion protein that mediates budded virus (BV) infection. We recently reported that BmNPV GP64's n-region of signal peptide (SP) blocked the SP-cleavage and mediated GP64 localization on the plasma membrane (PM); n-region (SP∆nGP64) absence caused GP64 intracellular localization, however, SP∆nGP64 was still incorporated into virion to generate BVs with lower infectivity. To better understand the biogenesis of the envelope of BmNPV BV, we conducted a label-free ESI mass spectrometry analysis of the envelope of purified BVs harboring PM localized GP64 or intracellular localized SP∆nGP64. The results indicated that 31 viral proteins were identified on the envelope, among which 15 were reported in other viruses. The other 16 proteins were first reported in BmNPV BV, including the BmNPV-specific protein BRO-A and proteins associated with vesicle transportation. Six proteins with significant intensity differences were detected in virions with differential localized GP64, and five specific proteins were identified in virions with GP64. Meanwhile, we identified 81 host proteins on the envelope, and seven lipoproteins were first identified in baculovirus virion; other 74 proteins are involved in the cytoskeleton, DNA-binding, vesicle transport, etc. In the meantime, eight and five specific host proteins were, respectively, identified in GP64 and SP∆nGP64's virions. The two virions shared 68 common host proteins, and 8 proteins were identified on their envelopes with a significant difference. This study provides new insight into the protein composition of BmNPV BV and a clue for further investigation of the budding mechanism of BmNPV.
Collapse
Affiliation(s)
- Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People's Republic of China
| | - Jingfeng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
| | - Congcong Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People's Republic of China.
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yao C, Pan S, Xu Y, Lu M, Zhao Y, Huo J, Hao B, Huang J. Bombyx mori Nucleopolyhedrovirus Hijacks Multivesicular Body as an Alternative Envelopment Platform for Budded Virus Egress. J Virol 2023; 97:e0004123. [PMID: 36916914 PMCID: PMC10062136 DOI: 10.1128/jvi.00041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Baculovirus budded virus (BV) acquires its envelope and viral membrane fusion proteins from the plasma membrane (PM) of the host cell during the budding process. However, this classical BV egress pathway has been questioned because an intracellularly localized membrane fusion protein, SPΔnGP64 (glycoprotein 64 [GP64] lacking the signal peptide [SP] n region), was assembled into the envelope to generate infective BVs in our recent studies. Here, we identify an additional pathway for Bombyx mori nucleopolyhedrovirus (BmNPV) BV assembly and release that differs, in part, from the currently accepted model for the egress pathway of baculovirus. Electron microscopy showed that during infection, BmNPV-infected cells contained many newly formed multivesicular body (MVB)-like compartments that included mature virions at 30 h postinfection (p.i.). Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB endosome marker, and GP64, a BmNPV fusion glycoprotein. MVB fusion with the PM and the release of mature virions, together with naked nucleocapsids, were observed at the cell surface. Furthermore, MVB egress mediated the translocation of SPΔnGP64 to the PM, which induced cell-cell fusion until 36 h p.i. This BV egress pathway can be partially inhibited by U18666A incubation and RNA interference targeting MVB biogenesis genes. Our findings indicate that BmNPV BVs are enveloped and released through MVBs via the cellular exosomal pathway, which is a subordinate BV egress pathway that produces virions with relatively inferior infectivity. This scenario has significant implications for the elucidation of the BmNPV BV envelopment pathway. IMPORTANCE BmNPV is a severe pathogen that infects mainly Bombyx mori, a domesticated insect of economic importance, and accounts for approximately 15% of economic losses in sericulture. BV production plays a key role in systemic BmNPV infection of larvae. Despite the progress made in the functional gene studies of BmNPV, BmNPV BV egress is ill-understood. This study reports a previously unreported MVB envelopment pathway in BmNPV BV egress. To our knowledge, this is the first report of a baculovirus using dual BV egress pathways. This specific BV egress mechanism explains the cause of the non-PM-localized SPΔnGP64-rescued gp64-null bacmid infectivity, elucidating the reason underlying the retention of SP by BmNPV GP64. The data obtained elucidate an alternate molecular mechanism of baculovirus BV egress.
Collapse
Affiliation(s)
- Congyue Yao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Shijia Pan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Mengze Lu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yating Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jiayao Huo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Hao B, Liu L, Liu N, Sun L, Fan F, Huang J. The Bombyx mori Nucleopolyhedrovirus GP64 Retains the Transmembrane Helix of Signal Peptide to Contribute to Secretion across the Cytomembrane. Microbiol Spectr 2022; 10:e0191322. [PMID: 35938817 PMCID: PMC9430547 DOI: 10.1128/spectrum.01913-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is the primary pathogen of silkworms that causes severe economic losses in sericulture. GP64 is the key membrane fusion protein that mediates budded virus (BV) fusion with the host cell membrane. Previously, we found that the n-region of the GP64 signal peptide (SP) is required for protein secretion and viral pathogenicity; however, our understanding of BmNPV GP64 remains limited. Here, we first reported that BmNPV GP64 retained its SP in the mature protein and virion in only host cells but did not retain in nonhost cells. Uncleaved SP mediates protein targeting to the cytomembrane or secretion in Bombyx mori cells. The exitance of the n-region extended the transmembrane helix length, which resulted in the cleavage site to be located in the helix structure and thus blocked cleavage from signal peptidase (SPase). Without the n-region, the protein fails to be transported to the cytomembrane, but this failure can be rescued by the cleavage site mutation of SP. Helix-breaking mutations in SP abolished protein targeting to the cytomembrane and secretion. Our results revealed a previously unrecognized mechanism by which SP of membrane fusion not only determines protein localization but also determines viral pathogenicity, which highlights the escape mechanism of SP from the cleavage by SPase. IMPORTANCE BmNPV is the primary pathogen of silkworms, which causes severe economic losses in sericulture. BmNPV and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) are closely related group I alphabaculoviruses, but they exhibit nonoverlapping host specificity. Recent studies suppose that GP64 is a determinant of host range, while knowledge remains limited. In this study, we revealed that BmNPV GP64 retained its SP in host cells but not in nonhost cells, and the SP retention is required for GP64 secretion across the cytomembrane. This is the first report that a type I membrane fusion protein retained its SP in mature proteins and virions. Our results unveil the mechanism by which SP GP64 escapes cleavage and the role of SP in protein targeting. This study will help elucidate an important mechanistic understanding of BmNPV infection and host range specificity.
Collapse
Affiliation(s)
- Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| | - Lin Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Na Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Luping Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Fengxiu Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Sun L, Yao C, Amanze C, Yin B, Huang J, Hao B. The cytoplasmic tail substitution increases the assembly efficiency of Ebola virus glycoprotein on the budded virus of Bombyx mori nucleopolyhedrovirus. Protein Expr Purif 2022; 200:106156. [PMID: 35987323 DOI: 10.1016/j.pep.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Glycoprotein (GP1,2) of the Ebola virus (EBOV) is the key membrane fusion protein, which is a key candidate protein for vaccine preparations. Previously, GP1,2 was expressed by Bombyx mori nucleopolyhedrovirus (BmNPV) expression vector system; however, few GP1,2 was incorporated into budded virus (BV) of BmNPV. To improve the incorporation efficiency of GP1,2 into the virion, the GP1,2 fusion with the cytoplasmic tail of GP64 of BmNPV was expressed in BmN cells by the BmNPV expression system. The BV was purified by ultracentrifugation, and GP1,2 expression in BV was detected by the antibody. The result indicated that a 532% increase in the relative GP1,2 densitometry signal was observed in constructs utilizing the GP64 C-terminal domain; moreover, the substitution of GP1,2 native signal peptide with GP64 signal peptide increased the incorporation efficiency by 34.6% in the relative GP1,2 densitometry signal. We revealed that the application of the cytoplasmic tail of BmNPV GP64 significantly increased the incorporation rate of GP1,2 into the BV envelope. This study lays a foundation for GP1,2 vaccine development.
Collapse
Affiliation(s)
- Luping Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Congyue Yao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
6
|
Induction of Robust and Specific Humoral and Cellular Immune Responses by Bovine Viral Diarrhea Virus Virus-Like Particles (BVDV-VLPs) Engineered with Baculovirus Expression Vector System. Vaccines (Basel) 2021; 9:vaccines9040350. [PMID: 33917272 PMCID: PMC8067437 DOI: 10.3390/vaccines9040350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 02/02/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle. Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to their safety and strong ability to elicit robust immune responses. In this study, we developed a strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs were spherical particles with the diameters of about 50 nm. Mice immunized with 15 μg of VLPs adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific humoral and cellular immune responses in mice, showing a promising potential of developing BVDV-VLP-based vaccines for the prevention of BVDV infections.
Collapse
|
7
|
Ishikawa R, Yoshida S, Sawada SI, Sasaki Y, Akiyoshi K. Preparation of engineered extracellular vesicles with full-length functional PD-1 membrane proteins by baculovirus expression system. Biochem Biophys Res Commun 2020; 526:967-972. [PMID: 32299612 DOI: 10.1016/j.bbrc.2020.03.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication by transporting functional molecules. The modification of EVs for clinical use as drug delivery systems is of considerable interest because of their biocompatibility and molecular transport ability. Programmed cell death ligand 1 (PD-L1) is an effective target molecule for drug delivery to cancer tissues and binds the single-transmembrane protein, Programmed cell death protein 1 (PD-1), an immune checkpoint that guards against autoimmunity. In this study, EVs were modified in a new surface engineering strategy to incorporate recombinant full-length functional PD-1 using a baculovirus system and newly designed PD-1 mutant with higher PD-L1 affinity. The insect cell line Spodoptera frugiperda 9 was infected with recombinant baculoviruses incorporating the PD-1 mutant gene to express the target membrane proteins. To ensure an effective insertion into the membrane, the native signal peptide of PD-1 was also replaced with that of the baculovirus envelope glycoprotein. Engineered EVs expressing the high-affinity PD-1 mutants (PD-1 EVs) were then isolated and characterized. Immunostaining and confocal laser scanning microscopy results confirmed the presence of full-length functional PD-1 mutants expressed by viral infection on both infected Spodoptera frugiperda 9 cell membrane surfaces and released EV membranes. Furthermore, the signal peptide substitution drastically increased the binding between PD-1 EVs and PD-L1. PD-1 EVs effectively bound PD-L1 and PD-L1-expressing cancer cells, showing potential as a candidate in new therapy approaches targeting PD-L1 EVs.
Collapse
Affiliation(s)
- Raga Ishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shosuke Yoshida
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|