1
|
Lin JY, Lin JY, Kuo RL, Huang HI. Heterogeneous nuclear ribonucleoprotein A3 binds to the internal ribosomal entry site of enterovirus A71 and affects virus replication in neural cells. J Cell Biochem 2024; 125:e30575. [PMID: 38720641 DOI: 10.1002/jcb.30575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 12/18/2024]
Abstract
Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.
Collapse
Affiliation(s)
- Jhao-Yin Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
2
|
Li H, Song J, Deng Z, Yao Y, Qiao W, Tan J. Cleavage of Stau2 by 3C protease promotes EV-A71 replication. Virol J 2024; 21:216. [PMID: 39272111 PMCID: PMC11401396 DOI: 10.1186/s12985-024-02489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71), as a neurotropic virus, mainly affects infants and young children under the age of 5. EV-A71 infection causes hand-foot-mouth disease and herpetic angina, and even life-threatening neurological complications. However, the molecular mechanism by which EV-A71 induces nervous system damage remains elusive. The viral protease 3C plays an important role during EV-A71 infection and is also a key intersection of virus-host interactions. Previously, we used yeast two-hybrid to screen out the host protein Double-stranded RNA-binding protein Staufen homolog 2 (Stau2), an important member involved in neuronal mRNA transport, potentially interacts with 3C. METHODS We used coimmunoprecipitation (Co-IP) and immunofluorescence assay (IFA) to confirm that EV-A71 3C interacts with Stau2. By constructing the mutant of Stau2, we found the specific site where the 3C protease cleaves Stau2. Detection of VP1 protein using Western blotting characterized EV-A71 viral replication, and overexpression or knockdown of Stau2 exhibited effects on EV-A71 replication. The effect of different cleavage products on EV-A71 replication was demonstrated by constructing Stau2 truncates. RESULTS In this study, we found that EV-A71 3C interacts with Stau2. Stau2 is cleaved by 3C at the Q507-G508 site. Overexpression of Stau2 promotes EV-A71 VP1 protein expression, whereas depletion of Stau2 by small interfering RNA inhibits EV-A71 replication. Stau2 is essential for EV-A71 replication, and the product of Stau2 cleavage by 3C, 508-570 aa, has activity that promotes EV-A71 replication. In addition, we found that mouse Stau2 is also cleaved by EV-A71 3C at the same site. CONCLUSIONS Our research provides an example for EV-A71-host interaction, enriching key targets of host factors that contribute to viral replication.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhi Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunfang Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Sheng CL, Jiang BD, Zhang CQ, Huang JH, Wang Z, Xu C. USP26 suppresses type I interferon signaling by targeting TRAF3 for deubiquitination. PLoS One 2024; 19:e0307776. [PMID: 39058724 PMCID: PMC11280224 DOI: 10.1371/journal.pone.0307776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) play a pivotal role in regulating the antiviral immune response by targeting members of the RLR signaling pathway. As a pivotal member of the RLR pathway, TRAF3 is essential for activating the MAVS/TBK-1/IRF3 signaling pathway in response to viral infection. Despite its importance, the function of DUBs in the TRAF3-mediated antiviral response is poorly understood. Ubiquitin-specific protease 26 (USP26) regulates the RLR signaling pathway to modulate the antiviral immune response. The results demonstrate that EV71 infection upregulates the expression of USP26. Knockdown of USP26 significantly enhances EV71-induced expression of IFN-β and downstream interferon-stimulated genes (ISGs). Deficiency of USP26 not only inhibits EV71 replication but also weakens the host's resistance to EV71 infection. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. Conversely, knockdown of USP26 leads to an increase in the K63-linked polyubiquitination of TRAF3. These findings unequivocally establish the essential role of USP26 in RLR signaling and significantly contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Cheng-Lan Sheng
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bang-Dong Jiang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chun-Qiu Zhang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jin-Hua Huang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Zi Wang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chao Xu
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
4
|
Wei J, Lv L, Wang T, Gu W, Luo Y, Feng H. Recent Progress in Innate Immune Responses to Enterovirus A71 and Viral Evasion Strategies. Int J Mol Sci 2024; 25:5688. [PMID: 38891876 PMCID: PMC11172324 DOI: 10.3390/ijms25115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Jialong Wei
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Linxi Lv
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Tian Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Yang Luo
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
- Institute of Precision Medicine, Chongqing University, Chongqing 400044, China
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| |
Collapse
|
5
|
Chio CC, Chan HW, Chen SH, Huang HI. Enterovirus D68 vRNA induces type III IFN production via MDA5. Virus Res 2024; 339:199284. [PMID: 38040125 PMCID: PMC10704515 DOI: 10.1016/j.virusres.2023.199284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
6
|
He C, Liu X, Yu M, Qiu Z, Huang T, Xie W, Cheng H, Yang Y, Hao X, Wang X. Smartphone conducted DNA portable quantitative detection platform based on photonic crystals chip and magnetic nanoparticles. Talanta 2023; 265:124849. [PMID: 37421793 DOI: 10.1016/j.talanta.2023.124849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
It is of great significance to develop a highly sensitive and intuitive virus detection tool. A portable platform is constructed for quantitative detection of viral DNA based on the principle of fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and graphene oxide nanosheets (GOs) in this work. To implement a high sensitivity and low detection limit, GOs are modified by magnetic nanoparticles to prepare magnetic graphene oxide nanosheets (MGOs). Among them, the application of MGOs can not only eliminate the background interference, but also amplify the fluorescence intensity to a certain extent. Whereafter, a simple carrier chip based on photonic crystals (PCs) is introduced to realize a visual solid-phase detection, which also amplifies the luminescence intensity of the detection system. Finally, under the application of the 3D printed accessory and smartphone program of red-green-blue (RGB) evaluation, the portable detection can be completed simply and accurately. In a word, this work proposes a portable DNA biosensor with the triple functions of quantification, visualization and real-time detection can be used as a high-quality viral detection strategy and clinical diagnosis method.
Collapse
Affiliation(s)
- Chaonan He
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Xiaorong Liu
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Mengmeng Yu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Zhuang Qiu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Tong Huang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Haoxin Cheng
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Yifei Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Xian Hao
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China; College of Chemistry of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330088, PR China.
| |
Collapse
|
7
|
Wu W, Li B, Xie T. Children with severe enterovirus A71 infection. BMC Pediatr 2023; 23:172. [PMID: 37055743 PMCID: PMC10100469 DOI: 10.1186/s12887-023-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND There are few reports on the timing of onset and the symptoms of enterovirus A71 (EV-A71) infection, which can easily be misdiagnosed. This study aimed to explore the clinical characteristics of children with severe EV-A71 infection. METHODS This retrospective observational study included children with severe EV-A71 infection admitted to Hebei Children's Hospital between January 2016 and January 2018. RESULTS A total of 101 patients were included: 57 males (56.4%) and 44 females (43.6%). They were 1-13 years of age. The symptoms were fever in 94 patients (93.1%), rash in 46 (45.5%), irritability in 70 (69.3%), and lethargy in 56 (55.4%). There were 19 (59.3%) patients with abnormal neurological magnetic resonance imaging [pontine tegmentum (n = 14, 43.8%), medulla oblongata (n = 11, 34.4%), midbrain (n = 9, 28.1%), cerebellum and dentate nucleus (n = 8, 25.0%), basal ganglia (n = 4, 12.5%), cortex (n = 4, 12.5%), spinal cord (n = 3, 9.3%), and meninges (n = 1, 3.1%)]. There was a positive correlation between the ratio of neutrophil count and white blood cell count in cerebrospinal fluid in the first 3 days of the disease (r = 0.415, P < 0.001). CONCLUSION The clinical symptoms of EV-A71 infection are fever and/or skin rash, irritability, and lethargy. Some patients have abnormal neurological magnetic resonance imaging. The white blood cell count in the cerebrospinal fluid of children with EV-A71 infection may increase alongside neutrophil counts.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital of Hebei Medical University, Hebei Provincial Key Laboratory of Pediatric Epilepsy and Neurological Diseases, 133 Jianhua Nan street, Shijiazhuang, 050031, China
| | - Baoguang Li
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital of Hebei Medical University, Hebei Provincial Key Laboratory of Pediatric Epilepsy and Neurological Diseases, 133 Jianhua Nan street, Shijiazhuang, 050031, China.
| | - Tao Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
8
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
9
|
TBK1 and IRF3 are potential therapeutic targets in Enterovirus A71-associated diseases. PLoS Negl Trop Dis 2023; 17:e0011001. [PMID: 36626364 PMCID: PMC9831319 DOI: 10.1371/journal.pntd.0011001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is an important causative agent of hand-foot-and-mouth disease (HFMD) associated with enormous healthcare and socioeconomic burden. Although a range of studies about EV-A71 pathogenesis have been well described, the underlying molecular mechanism in terms of innate immune response is still not fully understood, especially the roles of TANK-binding kinase 1 (TBK1) and interferon-regulatory factor 3 (IRF3). METHODOLOGY/PRINCIPAL FINDINGS Here, we applied TBK1 inhibitor and IRF3 agonist, for the first time, to evaluate the antiviral activities of TBK1 and IRF3 in vivo. We found that, through regulating EV-A71-induced type I interferon (IFN) response, IRF3 agonist effectively alleviated EV-A71-induced illness, while TBK1 inhibitor aggravated disease progression. In addition, EV-A71 replication was suppressed in EVA-71-infected mice administrated with IRF3 agonist. On the other hand, more severe pathological alterations of neuronal degeneration, muscle fiber breaks, fractured or fused alveolar walls, and diffuse congestion occurred in EVA-71-infected mice treated with TBK1 inhibitor administration. Furthermore, we determined the concentrations of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1β, monocyte chemotactic protein-1 (MCP-1), and IL-10 in both lungs and brains of mice and found that TBK1 inhibitor promoted EV-A71-induced inflammatory response, while IRF3 agonist alleviated it, which was consistent with clinical manifestations and pathological alterations. CONCLUSIONS Collectively, our findings suggest that TBK1 and IRF3 are potential therapeutic targets in EV-A71-induced illness.
Collapse
|
10
|
Zheng B, Zhou X, Tian L, Wang J, Zhang W. IFN-β1b induces OAS3 to inhibit EV71 via IFN-β1b/JAK/STAT1 pathway. Virol Sin 2022; 37:676-684. [PMID: 35934228 PMCID: PMC9583119 DOI: 10.1016/j.virs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022] Open
Abstract
Enterovirus 71 (EV71) caused hand, foot and mouth disease (HFMD) is a serious threat to the health of young children. Although type I interferon (IFN-I) has been proven to control EV71 replication, the key downstream IFN-stimulated gene (ISG) remains to be clarified and investigated. Recently, we found that 2′-5′-oligoadenylate synthetases 3 (OAS3), as one of ISG of IFN-β1b, was antagonized by EV71 3C protein. Here, we confirm that OAS3 is the major determinant of IFN-β1b-mediated EV71 inhibition, which depends on the downstream constitutive RNase L activation. 2′-5′-oligoadenylate (2-5A) synthesis activity deficient mutations of OAS3 D816A, D818A, D888A, and K950A lost resistance to EV71 because they could not activate downstream RNase L. Further investigation proved that EV71 infection induced OAS3 but not RNase L expression by IFN pathway. Mechanically, EV71 or IFN-β1b-induced phosphorylation of STAT1, but not STAT3, initiated the transcription of OAS3 by directly binding to the OAS3 promoter. Our works elucidate the immune regulatory mechanism of the host OAS3/RNase L system against EV71 replication. OAS3 contributes important inhibition effect for IFN-β1b against EV71. OAS3 resistance to EV71 replication depends on RNase L activation. STAT1 initiates the transcription of OAS3 by directly binding to the OAS3 promoter.
Collapse
|
11
|
Vazquez C, Jurado KA. Neurotropic RNA Virus Modulation of Immune Responses within the Central Nervous System. Int J Mol Sci 2022; 23:ijms23074018. [PMID: 35409387 PMCID: PMC8999457 DOI: 10.3390/ijms23074018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS) necessitates intricately coordinated immune responses to prevent neurological disease. However, the emergence of viruses capable of entering the CNS and infecting neurons threatens this delicate balance. Our CNS is protected from foreign invaders and excess solutes by a semipermeable barrier of endothelial cells called the blood–brain barrier. Thereby, viruses have implemented several strategies to bypass this protective layer and modulate immune responses within the CNS. In this review, we outline these immune regulatory mechanisms and provide perspectives on future questions in this rapidly expanding field.
Collapse
|
12
|
Guo X, Zeng S, Ji X, Meng X, Lei N, Yang H, Mu X. Type I Interferon-Induced TMEM106A Blocks Attachment of EV-A71 Virus by Interacting With the Membrane Protein SCARB2. Front Immunol 2022; 13:817835. [PMID: 35359978 PMCID: PMC8963425 DOI: 10.3389/fimmu.2022.817835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the main causative agents of hand, foot and mouth disease (HFMD) worldwide. Studies showed that EV-A71 and CV-A16 antagonize the interferon (IFN) signaling pathway; however, how IFN controls this viral infection is largely unknown. Here, we identified an IFN-stimulated gene, Transmembrane Protein 106A (TMEM106A), encoding a protein that blocks EV-A71 and CV-A16 infection. Combined approaches measuring viral infection, gene expression, and protein interactions uncovered that TMEM106A is required for optimal IFN-mediated viral inhibition and interferes with EV-A71 binding to host cells on the receptor scavenger receptor class B member 2 (SCARB2). Our findings reveal a new mechanism contributing to the IFN-mediated defense against EV-A71 and CV-A16 infection and provide a potential strategy for HFMD treatment by using the antiviral role of TMEM106A against enterovirus.
Collapse
Affiliation(s)
- Xuemin Guo
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Shinuan Zeng
- Department of Surgery, HKU-SZH & Faculty of Medicine,The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaobin Meng
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Nanfeng Lei
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Hai Yang
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Wang Y, Dan K, Xue X, Chen B, Chen C. Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction in SH-SY5Y cells. Gut Pathog 2022; 14:8. [PMID: 35151347 PMCID: PMC8840321 DOI: 10.1186/s13099-022-00481-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Background and aim Enterovirus 71(EV71) can cause severe hand, foot, and mouth disease (HFMD) with brain tissue involvement. Few effective anti-EV71 drugs are presently available in clinical practice. Interferon-α (IFN-α) was ineffective while Curcumin was effective in restricting EV71 replication in non-neuronal cells. Ubiquitin–proteasome-mediated degradation of interferon-alpha receptor 1 (IFNAR1) protein contributes to IFN-α resistance. Current study aimed to determine synergistic inhibition of EV71 by Curcumin and IFN-α in human neuroblastoma SH-SY5Y cells. Methods SH-SY5Y cells were infected with mock-/Curcumin-pre-incubated EV71 or transfected with plasmid containing interferon-stimulated response element (ISRE) or mRNA containing viral internal ribosomal entry site (IRES) following by post-treatment with Curcumin with or without IFN-α. Supernatant IFN-α/β was detected by ELISA. ISRE, IRSE, proteasome and deubiquitinating activity were measured by luciferase assay. EV71 RNA and viral protein or IFNAR1 were determined by qPCR and western blot, respectively. Results EV71 flailed to completely block IFN-α/β production but inhibited IFN-α signal. Curcumin only slightly inhibited EV71 proliferation without modulating virus attachment and internalization. However, Curcumin addition restored IFN-α-mediated ISRE activity thus significantly inhibiting EV71 replication. Furthermore, EV71 also reduced IFNAR1 protein with proteasome-dependence in SH-SY5Y cells, which can be reversed by Curcumin addition with the evidence that it lowered proteasome activity. Conclusion These data demonstrate that Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction via ubiquitin–proteasome disruption in SH-SY5Y cells.
Collapse
|
14
|
Li YP, Liu CR, Deng HL, Wang MQ, Tian Y, Chen Y, Zhang YF, Dang SS, Zhai S. DNA methylation and single-nucleotide polymorphisms in DDX58 are associated with hand, foot and mouth disease caused by enterovirus 71. PLoS Negl Trop Dis 2022; 16:e0010090. [PMID: 35041675 PMCID: PMC8765647 DOI: 10.1371/journal.pntd.0010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This research aimed to explore the association between the RIG-I-like receptor (RIG-I and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this context, we explored the influence of gene methylation and polymorphism on EV71-HFMD. METHODOLOGY/PRINCIPAL FINDINGS 60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60 severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abundance. DDX58 expression levels were significantly lower in mild patients than in healthy controls and lower in severe patients than in mild patients. Binary logistic regression analysis revealed statistically significant differences in the genotype frequencies of DDX58 rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins displayed correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3 and DDX58. CONCLUSIONS/SIGNIFICANCE DDX58 expression and promoter methylation were associated with EV71 infection progression, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is worth further attention.
Collapse
MESH Headings
- Child
- Child, Preschool
- CpG Islands/genetics
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DNA Methylation/genetics
- Enterovirus A, Human
- Female
- Genetic Predisposition to Disease/genetics
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/virology
- Humans
- Infant
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Male
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Severity of Illness Index
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
- Department of Pediatric, Xi’an Central Hospital, Xi’an, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Yan Tian
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Yuan Chen
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Yu-Feng Zhang
- Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Song Zhai
- Department of Infectious Diseases, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| |
Collapse
|
15
|
Chen J, Jing H, Martin-Nalda A, Bastard P, Rivière JG, Liu Z, Colobran R, Lee D, Tung W, Manry J, Hasek M, Boucherit S, Lorenzo L, Rozenberg F, Aubart M, Abel L, Su HC, Soler Palacin P, Casanova JL, Zhang SY. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J Exp Med 2021; 218:212742. [PMID: 34726731 PMCID: PMC8570298 DOI: 10.1084/jem.20211349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-β in the patients’ fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.
Collapse
Affiliation(s)
- Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Infectious Diseases, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Immunology Division, Genetics Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Wesley Tung
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Neurology Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Pere Soler Palacin
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
16
|
Chen GP, Xiang K, Sun L, Shi YL, Meng C, Song L, Liu RS, Li WD, Pan HF. TLR3 polymorphisms are associated with the severity of hand, foot, and mouth disease caused by enterovirus A71 in a Chinese children population. J Med Virol 2021; 93:6172-6179. [PMID: 34061379 DOI: 10.1002/jmv.27115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 05/29/2021] [Indexed: 11/07/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) is a contagious viral disease, and toll-like receptors (TLRs) play essential roles in resisting the pathogen. The aim of this study was to assess the potential relationship between several TLRs polymorphisms and the HFMD severity in a Chinese children population. A total of 328 Chinese children with HFMD were included in the present study. The polymorphisms of TLR3 (rs3775290, rs3775291, rs3775296, rs1879026, rs5743312, rs5743313, rs5743303, rs13126816, and rs3775292), TLR4 (rs4986790, rs4986791, rs2149356, rs11536889, and rs41426344), TLR7 (rs179009, rs179010, rs179016, rs3853839, rs2302267, rs1634323, and rs5741880), and TLR8 (rs3764880, rs2159377, rs2407992, rs5744080, rs3747414, rs3764879, and rs5744069) genes were selected. The study indicated that individuals with the GG genotype of TLR3 single-nucleotide polymorphism rs1879026 had a higher risk of developing severe cases (GG vs. GT: OR = 1.875; 95% CI, 1.183-2.971; p = .007). Meanwhile, TLR3 rs3775290 CC genotype and C allele were associated with lower disease severity in females (CC vs. CT: OR = 0.350; 95% CI, 0.163-0.751; p = .006; C vs. T: OR = 0.566; 95% CI, 0.332-0.965; p = .036). TLR3 rs3775291 CC genotype showed 2.537 folds higher risk of developing severe cases in females (CC vs. CT: OR = 2.537; 95% CI, 1.108-5.806; p = .026). Moreover, TLR3 rs1879026 GG genotype was found to be related to increased risk of severe cases in males (GG vs. GT: OR = 2.076; 95% CI, 1.144-3.768; p = .016). The current findings show that the genetic variants of TLR3 rs1879026, rs3775290, and rs3775291 are associated with the severity of EV-A71-associated HFMD in a Chinese children population.
Collapse
Affiliation(s)
- Guo-Ping Chen
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Liang Sun
- Department of Infectious Diseases, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Yong-Lin Shi
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Can Meng
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Lv Song
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Rui-Shan Liu
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Wei-Dong Li
- Department of Infectious Diseases, Anhui Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
17
|
Lin YL, Lu MY, Chuang CF, Kuo Y, Lin HE, Li FA, Wang JR, Hsueh YP, Liao F. TLR7 Is Critical for Anti-Viral Humoral Immunity to EV71 Infection in the Spinal Cord. Front Immunol 2021; 11:614743. [PMID: 33679702 PMCID: PMC7935532 DOI: 10.3389/fimmu.2020.614743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/22/2020] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) is a positive single-stranded RNA (ssRNA) virus from the enterovirus genus of Picornaviridae family and causes diseases ranged from the mild disease of hand, foot and mouth disease (HFMD) to the severe disease of neurological involvement in young children. TLR7 is an intracellular pattern recognition receptor (PRR) recognizing viral ssRNA. In this study, we investigated the role of TLR7 in EV71 infection in mouse pups (10-12 days old) and found that wild-type (WT) and TLR7 knock-out (TLR7KO) mice infected with EV71 showed similar limb paralysis at the onset and peak of the disease, comparable loss of motor neurons, and similar levels of antiviral molecules in the spinal cord. These results suggest that TLR7 is not the absolute PRR for EV71 in the spinal cord. Interestingly, TLR7KO mice infected with EV71 exhibited significantly delayed recovery from limb paralysis compared with WT mice. TLR7KO mice infected with EV71 showed significantly decreased levels of IgM and IgG2, important antibodies for antiviral humoral immunity. Furthermore, TLR7KO mice infected with EV71 showed a decrease of germinal center B cells in the spleen compared with WT mice. Altogether, our study suggests that TLR7 plays a critical role in anti-viral humoral immunity rather than in being a PRR in the spinal cord during EV71 infection in young mice.
Collapse
Affiliation(s)
- Ya-Lin Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Yi Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Fen Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hong-En Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Fang Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|