1
|
Ren M, Yang T, Liu M, Ma X, Li B, Al-Mughalles AS, Pei X, Zhang S. Application of small animal ultrasound imaging technology for identification of polycystic ovary syndrome in a mouse model. Biochem Biophys Res Commun 2024; 733:150634. [PMID: 39307110 DOI: 10.1016/j.bbrc.2024.150634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND AIMS Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age, characterized by irregular menstrual periods, elevated levels of androgens, and polycystic ovaries, leading to various symptoms and complications such as infertility, metabolic issues, and increased risk of diabetes and heart disease. This study aimed to compare traditional histological methods and ultrasound imaging for consistency in identifying PCOS in a mouse model. The shortest time to construct the PCOS model using letrozole was determined. METHODS Female C57/BL mice were randomly divided into three groups: Group A received normal saline and a regular diet; Group B received 1 mg/kg/day of letrozole with a regular diet; and Group C received 1 mg/kg/day of letrozole with a high-fat diet. All mice were administered letrozole by intragastric gavage daily for five weeks. The traditional identification method included measuring body weight, examining vaginal smears, monitoring the estrous cycle, measuring serum androgen levels, and performing H&E staining of ovarian tissues. The PCOS model was evaluated using ultrasound imaging to identify and monitor follicles. The significance of the difference between the traditional identification method and the ultrasonic method was calculated using the nonparametric McNemar test, and consistency between the two methods was assessed with the kappa-coefficient test. On this basis, the ultrasound imaging technology was used to monitor the model-making process for 2, 3 and 4 weeks, and to monitor the parameters of the ovary and follicles to judge the shortest time that gavage letrozole caused the appearance of vesicular follicles in the mouse ovary. RESULTS The traditional identification method showed no PCOS phenotype in group A mice, while groups B and C showed multiple ovarian cystic follicles, indicating successful model induction. The ultrasound imaging results were consistent with the traditional method, showing no PCOS in group A and multiple cystic follicles in groups B and C. The McNemar test revealed no significant difference between the traditional and ultrasonic identification methods. The kappa-coefficient test assessed consistency, yielding a value of 0.903, indicating strong agreement between the methods. The ovarian area, diameter, and the number and diameter of cystic follicles were not significantly changed at two weeks in the letrozole group compared with the control group. At three weeks, there were significant increases in the number and in the diameter of vesicular follicles compared with control cells. At four weeks, the number and diameter, the maximum cross-sectional area and diameter of the ovary were significantly increased compared with the control group. CONCLUSIONS The ultrasound and traditional methods provide consistent results for identifying PCOS in a mouse model. Construction of the PCOS model by letrozole gavage takes at least three weeks.
Collapse
Affiliation(s)
- Mengmeng Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China; Yinchuan Maternal and Child Health Care Hospital, Yinchuan, 750004, China
| | - Tingting Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Meichen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaojuan Ma
- Department of Ultrasound Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, 750004, China
| | - Boya Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Akram S Al-Mughalles
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Shuya Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Christoff RR, Nani JV, Lessa G, Rabello T, Rossi AD, Krenn V, Higa LM, Tanuri A, Garcez PP, Hayashi MAF. Assessing the role of Ndel1 oligopeptidase activity in congenital Zika syndrome: Potential predictor of congenital syndrome endophenotype and treatment response. J Neurochem 2023; 166:763-776. [PMID: 37497817 DOI: 10.1111/jnc.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Maternal infections are among the main risk factors for cognitive impairments in the offspring. Zika virus (ZIKV) can be transmitted vertically, causing a set of heterogeneous birth defects, such as microcephaly, ventriculomegaly and corpus callosum dysgenesis. Nuclear distribution element like-1 (Ndel1) oligopeptidase controls crucial aspects of cerebral cortex development underlying cortical malformations. Here, we examine Ndel1 activity in an animal model for ZIKV infection, which was associated with deregulated corticogenesis. We observed here a reduction in Ndel1 activity in the forebrain associated with the congenital syndrome induced by ZIKV isolates, in an in utero and postnatal injections of different inoculum doses in mice models. In addition, we observed a strong correlation between Ndel1 activity and brain size of animals infected by ZIKV, suggesting the potential of this measure as a biomarker for microcephaly. More importantly, the increase of interferon (IFN)-beta signaling, which was used to rescue the ZIKV infection outcomes, also recovered Ndel1 activity to levels similar to those of uninfected healthy control mice, but with no influence on Ndel1 activity in uninfected healthy control animals. Taken together, we demonstrate for the first time here an association of corticogenesis impairments determined by ZIKV infection and the modulation of Ndel1 activity. Although further studies are still necessary to clarify the possible role(s) of Ndel1 activity in the molecular mechanism(s) underlying the congenital syndrome induced by ZIKV, we suggest here the potential of monitoring the Ndel1 activity to predict this pathological condition at early stages of embryos or offspring development, during while the currently employed methods are unable to detect impaired corticogenesis leading to microcephaly. Ndel1 activity may also be possibly used to follow up the positive response to the treatment, such as that employing the IFN-beta that is able to rescue the ZIKV-induced brain injury.
Collapse
Affiliation(s)
- Raissa R Christoff
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Gabriel Lessa
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Tailene Rabello
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Atila D Rossi
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Veronica Krenn
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milano, Italy
| | - Luiza M Higa
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|