1
|
Pang F, Long Q, Liang S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024; 15:2398171. [PMID: 39258802 PMCID: PMC11404621 DOI: 10.1080/21505594.2024.2398171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant β-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.
Collapse
MESH Headings
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Molecular Docking Simulation
- Animals
- Orf virus/immunology
- Orf virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Molecular Dynamics Simulation
- Mice
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/chemistry
- Ecthyma, Contagious/prevention & control
- Ecthyma, Contagious/immunology
- Ecthyma, Contagious/virology
- Mice, Inbred BALB C
- Female
- T-Lymphocytes, Cytotoxic/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Liang S, Long Q, Pang F. Preparation and characterization of a mouse polyclonal antibody against the truncated ORFV113 recombinant protein of Orf virus. Vet J 2024; 308:106265. [PMID: 39521035 DOI: 10.1016/j.tvjl.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Orf is a contagious zoonotic disease caused by Orf virus (ORFV), posing a threat to both animal and human health. The ORFV113 gene, located in the terminal variable region of the ORFV genome, has been demonstrated as a significant virulence gene, but its function remains largely unknown. In the study, we first amplified the truncated version of the ORFV113 gene (ORFV113t) by removing its transmembrane domain at the 5' end. We then constructed the pET-32a-ORFV113t recombinant plasmid and expressed the truncated ORFV113 recombinant protein in Escherichia coli (E.coli). The purified ORFV113t fusion protein was used to immunize mice and generate a polyclonal antibody. This polyclonal antibody was subsequently used to detect the expression and subcellular localization of the ORFV113 protein. Additionally, virus neutralization test was utilized to determine the neutralizing titer of the polyclonal antibody. The results demonstrated that we successfully expressed the ORFV113t recombinant protein in a prokaryotic expression system and generated a mouse-derived polyclonal antibody targeting the ORFV113t recombinant protein with a titer of 1:204,800. This antibody exhibited specificity for detecting the ORFV113 protein expressed in both prokaryotic and eukaryotic cells. The ORFV113 protein was found to be localized in the cytoplasm of infected Lamb testis (LT) cells. Notably, the polyclonal antibody demonstrated neutralizing activity against ORFV in vitro, with a neutralizing titer of 1:32. The prepared mouse anti-ORFV113t protein polyclonal antibody can be utilized for further study on potential functions of the ORFV113 protein in viral pathogenesis.
Collapse
Affiliation(s)
- Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Yang Y, Liu H, Zou D, Ji F, Lv R, Wu H, Zhou H, Ren A, Xu T, Hou G, Hu C. Polystyrene microplastics exposure reduces meat quality and disturbs skeletal muscle angiogenesis via thrombospondin 1. Food Res Int 2024; 190:114581. [PMID: 38945601 DOI: 10.1016/j.foodres.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.
Collapse
Affiliation(s)
- Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, China
| | - Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ao Ren
- Changning Jianghe Hi-Tech Agriculture and Forestry Co., Ltd, Hengyang, Hunan 421500, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
4
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Yao X, Jing T, Geng Q, Pang M, Zhao X, Li S, Chen D, Ma W. Dual analysis of wild-type and attenuated Orf virus and host cell transcriptomes revealed novel virus-host cell interactions. mSphere 2023; 8:e0039823. [PMID: 37982609 PMCID: PMC10732022 DOI: 10.1128/msphere.00398-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Currently, the only available commercial vaccines for Orf virus (ORFV) are live attenuated vaccines, which present a potential risk of reversion to virulence. Therefore, understanding the pathogenic mechanisms of different virulent strains of ORFV and host immune responses triggered by these viruses is crucial for developing new vaccines and interventions. In this study, we found that the attenuated strain downregulates the host innate immune response and antiviral activity. In addition, we noted that the wild-type strain can induce the immune response pattern centered on interferon-stimulated genes and interferon regulatory factor gene family. We predicted that STAT1 and STAT2 are the main transcription factors upstream of target gene promoters through gene regulatory networks and exert significant regulatory effects on co-expressed genes. Our study elucidated the complex interaction between ORFV strains and host cell immune responses, providing new insights into vaccine research for ORFV.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingru Geng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuanduo Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaofei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Chen JM, Zhao SS, Tao DL, Li JY, Yang X, Fan YY, Song JK, Liu Q, Zhao GH. Temporal transcriptomic changes in microRNAs involved in the host immune response and metabolism during Neospora caninum infection. Parasit Vectors 2023; 16:28. [PMID: 36694228 PMCID: PMC9872418 DOI: 10.1186/s13071-023-05665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neospora caninum infection is a major cause of abortion in cattle, which results in serious economic losses to the cattle industry. However, there are no effective drugs or vaccines for the control of N. caninum infections. There is increasing evidence that microRNAs (miRNAs) are involved in many physiological and pathological processes, and dysregulated expression of host miRNAs and the biological implications of this have been reported for infections by various protozoan parasites. However, to our knowledge, there is presently no published information on host miRNA expression during N. caninum infection. METHODS The expression profiles of miRNAs were investigated by RNA sequencing (RNA-seq) in caprine endometrial epithelial cells (EECs) infected with N. caninum at 24 h post infection (pi) and 48 hpi, and the functions of differentially expressed (DE) miRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The transcriptome data were validated by using quantitative real-time polymerase chain reaction. One of the upregulated DEmiRNAs, namely chi-miR-146a, was selected to study the effect of DEmiRNAs on the propagation of N. caninum tachyzoites in caprine EECs. RESULTS RNA-seq showed 18 (17 up- and one downregulated) and 79 (54 up- and 25 downregulated) DEmiRNAs at 24 hpi and 48 hpi, respectively. Quantitative real-time polymerase chain reaction analysis of 13 randomly selected DEmiRNAs (10 up- and three downregulated miRNAs) confirmed the validity of the RNA-seq data. A total of 7835 messenger RNAs were predicted to be potential targets for 66 DEmiRNAs, and GO and KEGG enrichment analysis of these predicted targets revealed that DEmiRNAs altered by N. caninum infection may be involved in host immune responses (e.g. Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-β signaling pathway, mitogen-activated protein kinase signaling pathway) and metabolic pathways (e.g. lysine degradation, insulin signaling pathway, AMP-activated protein kinase signaling pathway, Rap1 signaling pathway, calcium signaling pathway). Upregulated chi-miR-146a was found to promote N. caninum propagation in caprine EECs. CONCLUSIONS This is, to our knowledge, the first report on the expression profiles of host miRNAs during infection with N. caninum, and shows that chi-miR-146a may promote N. caninum propagation in host cells. The novel findings of the present study should help to elucidate the interactions between host cells and N. caninum.
Collapse
Affiliation(s)
- Jin-Ming Chen
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Shan-Shan Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - De-Liang Tao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jing-Yu Li
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Ying-Ying Fan
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Jun-Ke Song
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Qun Liu
- grid.22935.3f0000 0004 0530 8290National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guang-Hui Zhao
- grid.144022.10000 0004 1760 4150Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
7
|
Lai G, Zhao R, Zhuang W, Hou Z, Yang Z, He P, Wu J, Sang H. BMSC-derived exosomal miR-27a-3p and miR-196b-5p regulate bone remodeling in ovariectomized rats. PeerJ 2022; 10:e13744. [PMID: 36168439 PMCID: PMC9509671 DOI: 10.7717/peerj.13744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023] Open
Abstract
Background In the bone marrow microenvironment of postmenopausal osteoporosis (PMOP), bone marrow mesenchymal stem cell (BMSC)-derived exosomal miRNAs play an important role in bone formation and bone resorption, although the pathogenesis has yet to be clarified. Methods BMSC-derived exosomes from ovariectomized rats (OVX-Exo) and sham-operated rats (Sham-Exo) were co-cultured with bone marrow-derived macrophages to study their effects on osteoclast differentiation. Next-generation sequencing was utilized to identify the differentially expressed miRNAs (DE-miRNAs) between OVX-Exo and Sham-Exo, while target genes were analyzed using bioinformatics. The regulatory effects of miR-27a-3p and miR-196b-5p on osteogenic differentiation of BMSCs and osteoclast differentiation were verified by gain-of-function and loss-of-function analyses. Results Osteoclast differentiation was significantly enhanced in the OVX-Exo treatment group compared to the Sham-Exo group. Twenty DE-miRNAs were identified between OVX-Exo and Sham-Exo, among which miR-27a-3p and miR-196b-5p promoted the expressions of osteogenic differentiation markers in BMSCs. In contrast, knockdown of miR-27a-3p and miR-196b-5p increased the expressions of osteoclastic markers in osteoclast. These 20 DE-miRNAs were found to target 11435 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these target genes were involved in several biological processes and osteoporosis-related signaling pathways. Conclusion BMSC-derived exosomal miR-27a-3p and miR-196b-5p may play a positive regulatory role in bone remodeling.
Collapse
Affiliation(s)
- Guohua Lai
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Renli Zhao
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zefeng Yang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Peipei He
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiachang Wu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|