1
|
Harima H, Qiu Y, Sasaki M, Ndebe J, Penjaninge K, Simulundu E, Kajihara M, Ohnuma A, Matsuno K, Nao N, Orba Y, Takada A, Ishihara K, Hall WW, Hang'ombe BM, Sawa H. A first report of rotavirus B from Zambian pigs leading to the discovery of a novel VP4 genotype P[9]. Virol J 2024; 21:263. [PMID: 39449113 PMCID: PMC11515359 DOI: 10.1186/s12985-024-02533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Rotavirus B (RVB) causes diarrhea in humans and pigs. Although various RVB strains were identified in humans and various animals globally, little is known about the epidemiology RVB infection in Africa. In this study, we attempted to examine the prevalence of RVB infection in pig populations in Zambia. METHODS Metagenomic analyses were conducted on pig feces collected in Zambia to detect double stranded RNA viruses, including RVB. To clarify the prevalence of RVB infection in pig populations in Zambia, 147 fecal samples were screened for the RVB detection by RT-qPCR. Full genome sequence of a detected RVB was determined by Sanger sequencing and genetically analyzed. RESULTS The metagenomic analyses revealed that RVB sequence reads and contigs of RVB were detected from one fecal sample collected from pigs in Zambia. RT-qPCR screening detected RVB genomes in 36.7% (54/147) of fecal samples. Among 54 positive samples, 13 were positive in non-diarrheal samples (n = 48, 27.1%) and 41 in diarrheal samples (n = 99, 41.4%). Genetic analyses demonstrated that all the segments of ZP18-18, except for VP4, had high nucleotide sequence identities (80.6-92.6%) with all other known RVB strains detected in pigs. In contrast, the VP4 sequence of ZP18-18 was highly divergent from other RVB strains (< 64.6% identities) and formed a distinct lineage in the phylogenetic tree. Notably, the VP8 subunit of the VP4 showed remarkably low amino acid identities (33.3%) to those of known RVB strains, indicating that the VP8 subunit of ZP18-18 was unique among RVB strains. According to the whole genome classification for RVB, ZP18-18 was assigned to a genotype constellation, G18-P[9]-I12-R4-C4-M4-A8-N10-T5-E4-H7 with the newly established VP4 genotype P[9]. CONCLUSIONS This current study updates the geographical distribution and the genetic diversity of RVB. Given the lack of information regarding RVB in Africa, further RVB surveillance is required to assess the potential risk to humans and animals.
Collapse
Affiliation(s)
- Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
| | - Joseph Ndebe
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Kapila Penjaninge
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- Macha Research Trust, Choma, 20100, Zambia
| | - Masahiro Kajihara
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Aiko Ohnuma
- Technical office, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001- 0020, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
| | - Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernard M Hang'ombe
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan.
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia.
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia.
| |
Collapse
|
2
|
Chen X, Guo Q, Li YY, Song TY, Ge JQ. Metagenomic analysis fecal microbiota of dysentery-like diarrhoea in a pig farm using next-generation sequencing. Front Vet Sci 2023; 10:1257573. [PMID: 37915946 PMCID: PMC10616309 DOI: 10.3389/fvets.2023.1257573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Porcine enteric diseases including swine dysentery involves a wide range of possible aetiologies and seriously damages the intestine of pigs of all ages. Metagenomic next-generation sequencing is commonly used in research for detecting and analyzing pathogens. In this study, the feces of pigs from a commercial swine farm with dysentery-like diarrhea was collected and used for microbiota analysis by next-generation sequencing. While Brachyspira spp. was not detected in diarrheal pig fecal samples, indicating that the disease was not swine dysentery. The quantity of microbial population was extremely lowered, and the bacterial composition was altered with a reduction in the relative abundance of the probiotics organisms, Firmicutes and Bacteroidetes, with an increase in pathogens like Fusobacterium and Proteobacteria, in which the specific bacteria were identified at species-level. Viral pathogens, porcine circovirus type 2, porcine lymphotropic herpesviruses 1, and porcine mastadenovirus A were also detected at pretty low levels. Carbohydrate-active enzymes (CAZy) analysis indicated that the constitute of Firmicutes and Bacteroidete were also changed. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) alignment analysis indicated that the microbiota of diarrheal pigs had a lower ability in utilizing energy sources but were enriched in multi-drug resistance pathways. Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors of Pathogenic Bacteria (VFDB) analysis indicated that genes for elfamycin and sulfonamide resistance and the iron uptake system were enriched in diarrheal pigs. This revealed potential bacterial infection and can guide antibiotic selection for treating dysentery. Overall, our data suggested that alterations in both the population and functional attributes of microbiota in diarrheal pigs with decreased probiotic and increased pathogenic microorganisms. These results will help elucidate the mechanism of dysentery-like diarrhea and the development of approaches to control the disease.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Chen QY, Sun ZH, Che YL, Chen RJ, Wu XM, Wu RJ, Wang LB, Zhou LJ. High Prevalence, Genetic Diversity, and Recombination of Porcine Sapelovirus in Pig Farms in Fujian, Southern China. Viruses 2023; 15:1751. [PMID: 37632093 PMCID: PMC10458035 DOI: 10.3390/v15081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898-902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3' end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development.
Collapse
Affiliation(s)
- Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhi-Hua Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Ru-Jing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Xue-Min Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Ren-Jie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Long-Bai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China; (Q.-Y.C.); (Y.-L.C.); (R.-J.C.); (X.-M.W.); (R.-J.W.)
| |
Collapse
|
4
|
Lu SJ, Ma MY, Yan XG, Zhao FJ, Hu WY, Ding QW, Ren HJ, Xiang YQ, Zheng LL. Development and application of a low-priced duplex quantitative PCR assay based on SYBR Green I for the simultaneous detection of porcine deltacoronavirus and porcine sapelovirus. VET MED-CZECH 2023; 68:106-115. [PMID: 37981902 PMCID: PMC10581527 DOI: 10.17221/79/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 11/21/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) and porcine sapelovirus (PSV) are two viruses that can cause diarrhoea in pigs and bring great economic loss to the pig industry. In this research, a duplex real-time quantitative polymerase chain reaction (qPCR) assay based on SYBR Green I was developed to simultaneously detect PDCoV and PSV. No specific melting peaks were found in other porcine diarrhoea-associated viruses, indicating that the method developed in this study had good specificity. The detection limits of PDCoV and PSV were 1.0 × 101 copies μl-1 and 1.0 × 102 copies μl-1, respectively. The duplex real-time qPCR assay tested two hundred and three (203) intestinal and faecal samples collected from diarrhoeal and asymptomatic pigs. The positive rates of PDCoV and PSV were 20.2% and 23.2%, respectively. The co-infection rate of PDCoV and PSV was 13.8%. To evaluate the accuracy of the developed method, conventional PCR and singular TaqMan real-time qPCR assays for PDCoV/PSV were also used to detect the samples. The results showed that the duplex real-time qPCR assay was consistent with the singular assays, but its sensitivity was higher than conventional PCR methods. This duplex real-time qPCR assay provides a rapid, sensitive and reliable method in a clinic to simultaneously detect PDCoV and PSV.
Collapse
Affiliation(s)
- Si-Jia Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Meng-Yao Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Xiao-Guang Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Fu-Jie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Wen-Yang Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Qing-Wen Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Hao-Jie Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Yu-Qiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Lan-Lan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
5
|
Ibrahim YM, Zhang W, Werid GM, Zhang H, Feng Y, Pan Y, Zhang L, Li C, Lin H, Chen H, Wang Y. Isolation, Characterization, and Molecular Detection of Porcine Sapelovirus. Viruses 2022; 14:v14020349. [PMID: 35215935 PMCID: PMC8877214 DOI: 10.3390/v14020349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022] Open
Abstract
Porcine sapelovirus (PSV) is an important emerging pathogen associated with a wide variety of diseases in swine, including acute diarrhoea, respiratory distress, skin lesions, severe neurological disorders, and reproductive failure. Although PSV is widespread, serological assays for field-based epidemiological studies are not yet available. Here, four PSV strains were recovered from diarrheic piglets, and electron microscopy revealed virus particles with a diameter of ~32 nm. Analysis of the entire genome sequence revealed that the genomes of PSV isolates ranged 7569–7572 nucleotides in length. Phylogenetic analysis showed that the isolated viruses were classified together with strains from China. Additionally, monoclonal antibodies for the recombinant PSV-VP1 protein were developed to specifically detect PSV infection in cells, and we demonstrated that isolated PSVs could only replicate in cells of porcine origin. Using recombinant PSV-VP1 protein as the coating antigen, we developed an indirect ELISA for the first time for the detection of PSV antibodies in serum. A total of 516 swine serum samples were tested, and PSV positive rate was 79.3%. The virus isolates, monoclonal antibodies and indirect ELISA developed would be useful for further understanding the pathophysiology of PSV, developing new diagnostic assays, and investigating the epidemiology of the PSV.
Collapse
Affiliation(s)
- Yassein M. Ibrahim
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Wenli Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Gebremeskel Mamu Werid
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - He Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Yawen Feng
- Laboratory of Inspection and Testing, Hebei Provincial Station of Veterinary Drug and Feed, Shijiazhuang 050000, China;
| | - Yu Pan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Lin Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Changwen Li
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Huan Lin
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
| | - Yue Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Y.M.I.); (W.Z.); (G.M.W.); (H.Z.); (Y.P.); (L.Z.); (C.L.); (H.L.); (H.C.)
- Correspondence:
| |
Collapse
|
6
|
Harima H, Okuya K, Kajihara M, Ogawa H, Simulundu E, Bwalya E, Qiu Y, Mori-Kajihara A, Munyeme M, Sakoda Y, Saito T, Hang'ombe BM, Sawa H, Mweene AS, Takada A. Serological and molecular epidemiological study on swine influenza in Zambia. Transbound Emerg Dis 2021; 69:e931-e943. [PMID: 34724353 DOI: 10.1111/tbed.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Influenza A viruses (IAVs) cause highly contagious respiratory diseases in humans and animals. In 2009, a swine-origin pandemic H1N1 IAV, designated A(H1N1)pdm09 virus, spread worldwide, and has since frequently been introduced into pig populations. Since novel reassortant IAVs with pandemic potential may emerge in pigs, surveillance for IAV in pigs is therefore necessary not only for the pig industry but also for public health. However, epidemiological information on IAV infection of pigs in Africa remains sparse. In this study, we collected 246 serum and 605 nasal swab samples from pigs in Zambia during the years 2011-2018. Serological analyses revealed that 49% and 32% of the sera collected in 2011 were positive for hemagglutination-inhibition (HI) and neutralizing antibodies against A(H1N1)pdm09 virus, respectively, whereas less than 5.3% of sera collected during the following period (2012-2018) were positive in both serological tests. The positive rate and the neutralization titres to A(H1N1)pdm09 virus were higher than those to classical swine H1N1 and H1N2 IAVs. On the other hand, the positive rate for swine H3N2 IAV was very low in the pig population in Zambia in 2011-2018 (5.3% and 0% in HI and neutralization tests, respectively). From nasal swab samples, we isolated one H3N2 and eight H1N1 IAV strains with an isolation rate of 1.5%. Phylogenetic analyses of all eight gene segments revealed that the isolated IAVs were closely related to human IAV strains belonging to A(H1N1)pdm09 and seasonal H3N2 lineages. Our findings indicate that reverse zoonotic transmission from humans to pigs occurred during the study period in Zambia and highlight the need for continued surveillance to monitor the status of IAVs circulating in swine populations in Africa.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Macha Research Trust, Choma, Zambia
| | - Eugene Bwalya
- Department of Clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takehiko Saito
- Department of Animal Disease Control and Prevention, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,One Health Research Center, Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, Zambia
| |
Collapse
|
7
|
Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021; 13:v13081608. [PMID: 34452472 PMCID: PMC8402840 DOI: 10.3390/v13081608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses—porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.
Collapse
|
8
|
Li N, Tao J, Li B, Cheng J, Shi Y, Xiaohui S, Liu H. Molecular characterization of a porcine sapelovirus strain isolated in China. Arch Virol 2021; 166:2683-2692. [PMID: 34268639 DOI: 10.1007/s00705-021-05153-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023]
Abstract
Porcine sapelovirus (PSV) infections have been associated with a wide spectrum of symptoms, ranging from asymptomatic infection to clinical signs including diarrhoea, pneumonia, reproductive disorders, and polioencephalomyelitis. Although it has a global distribution, there have been relatively few studies on PSV in domestic animals. We isolated a PSV strain, SHCM2019, from faecal specimens from swine, using PK-15 cells. To investigate its molecular characteristics and pathogenicity, the genomic sequence of strain SHCM2019 was analysed, and clinical manifestations and pathological changes occurring after inoculation of neonatal piglets were observed. The virus isolated using PK-15 cells was identified as PSV using RT-PCR, transmission electron microscopy (TEM), and immunofluorescence assay (IFA). Sequencing results showed that the full-length genome of the SHCM2019 strain was 7,567 nucleotides (nt) in length, including a 27-nucleotide poly(A) tail. Phylogenetic analysis demonstrated that this virus was a PSV isolate belonging to the Chinese strain cluster. Recombination analysis indicated that there might be a recombination breakpoint upstream of the 3D region of the genome. Pathogenicity experiments demonstrated that the virus isolate could cause diarrhoea and pneumonia in piglets. In breif, a recombinant PSV strain, SHCM2019, was isolated and shown to be pathogenic. Our results may provide a reference for future research on the pathogenic mechanism and evolutionary characteristics of PSV.
Collapse
Affiliation(s)
- Nana Li
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Shi Xiaohui
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Stäubli T, Rickli CI, Torgerson PR, Fraefel C, Lechmann J. Porcine teschovirus, sapelovirus, and enterovirus in Swiss pigs: multiplex RT-PCR investigation of viral frequencies and disease association. J Vet Diagn Invest 2021; 33:864-874. [PMID: 34151653 DOI: 10.1177/10406387211025827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Porcine teschovirus (PTV), sapelovirus (PSV-A), and enterovirus (EV-G) are enteric viruses that can infect pigs and wild boars worldwide. The viruses have been associated with several diseases, primarily gastrointestinal, neurologic, reproductive, and respiratory disorders, but also with subclinical infections. However, for most serotypes, proof of a causal relationship between viral infection and clinical signs is still lacking. In Switzerland, there has been limited investigation of the occurrence of the 3 viruses. We used a modified multiplex reverse-transcription PCR protocol to study the distribution of the viruses in Swiss pigs by testing 363 fecal, brain, and placental or abortion samples from 282 healthy and diseased animals. We did not detect the 3 viruses in 94 placental or abortion samples or in 31 brain samples from healthy pigs. In brain tissue of 81 diseased pigs, we detected 5 PSV-A and 4 EV-G positive samples. In contrast, all 3 viruses were detected at high frequencies in fecal samples of both healthy and diseased pigs. In healthy animals, PTV was detected in 47%, PSV-A in 51%, and EV-G in 70% of the 76 samples; in diseased animals, frequencies in the 81 samples were 54%, 64%, and 68%, respectively. The viruses were detected more frequently in fecal samples from weaned and fattening pigs compared to suckling piglets and sows. Co-detections of all 3 viruses were the most common finding. Based on clinical and pathology data, statistical analysis yielded no evidence for an association of virus detection and disease. Further research is required to determine if pathogenicity is linked to specific serotypes of these viruses.
Collapse
Affiliation(s)
- Tamara Stäubli
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Charlotte I Rickli
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paul R Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Harima H, Sasaki M, Kajihara M, Gonzalez G, Simulundu E, Bwalya EC, Qiu Y, Okuya K, Isono M, Orba Y, Takada A, Hang'ombe BM, Mweene AS, Sawa H. Characterization of mammalian orthoreoviruses isolated from faeces of pigs in Zambia. J Gen Virol 2020; 101:1027-1036. [PMID: 32706330 DOI: 10.1099/jgv.0.001476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan.,Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Gabriel Gonzalez
- Division of Bioinformatics, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Eugene C Bwalya
- Department of Clinical Studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Kosuke Okuya
- Division of Global Epidemiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Mao Isono
- Division of Global Epidemiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo, 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Aaron S Mweene
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo, 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Global Virus Network, Baltimore, Maryland, 21201, 725 West Lombard St, Room S413, Baltimore, USA.,Division of Molecular Pathobiology, Hokkaido University, Research Center for Zoonosis Control, N20 W10, Kita-ku, Sapporo, 001-0020, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| |
Collapse
|