1
|
Lombardo MS, Armando F, Marek K, Rohn K, Baumgärtner W, Puff C. Persistence of Infectious Canine Distemper Virus in Murine Xenotransplants of Canine Histiocytic Sarcoma Cells after Intratumoral Application. Int J Mol Sci 2024; 25:8297. [PMID: 39125874 PMCID: PMC11311720 DOI: 10.3390/ijms25158297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Oncolytic viruses and morbilliviruses in particular, represent an interesting therapeutic approach for tumors with a poor prognosis and frequent resistance to conventional therapies. Canine histiocytic sarcomas (HS) exemplify such a neoplasm in need for new curative approaches. Previous investigations demonstrated a limited success of an acute intratumoral application of canine distemper virus (CDV) on xenotransplanted canine histiocytic sarcoma cells (DH82 cells), while persistently CDV-infected DH82 cell transplants exhibited a complete spontaneous regression. Therefore, the present study focuses on an intratumoral application of persistently CDV vaccine strain Onderstepoort-infected DH82 (DH82 Ond p.i.) cells into non-infected subcutaneous DH82 cell transplants in a murine model. DH82 cell transplants that received 10 applications, two days apart, showed a transient growth retardation as well as larger areas of intratumoral necrosis, lower mitotic rates, and a decreased intratumoral vascularization compared to controls. Viral mRNA was detected in all neoplasms following application of DH82 Ond p.i. cells until 66 days after the last injection. Furthermore, infectious virus was present until 62 days after the last injection. Although complete regression was not achieved, the present application regimen provides promising results as a basis for further treatments, particularly with genetically modified viruses, to enhance the observed effects.
Collapse
Affiliation(s)
- Mara Sophie Lombardo
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.S.L.); (F.A.); (W.B.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.S.L.); (F.A.); (W.B.)
- Pathology Unit, Veterinary Medicine Department, University of Parma, 43126 Parma, Italy
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.S.L.); (F.A.); (W.B.)
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.S.L.); (F.A.); (W.B.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.S.L.); (F.A.); (W.B.)
| |
Collapse
|
2
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Marek K, Armando F, Asawapattanakul T, Nippold VM, Plattet P, Gerold G, Baumgärtner W, Puff C. Functional Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Delivered by Canine Histiocytic Sarcoma Cells Persistently Infected with Engineered Attenuated Canine Distemper Virus. Pathogens 2023; 12:877. [PMID: 37513724 PMCID: PMC10385001 DOI: 10.3390/pathogens12070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The immune response plays a key role in the treatment of malignant tumors. One important molecule promoting humoral and cellular immunity is granulocyte-macrophage colony-stimulating factor (GM-CSF). Numerous successful trials have led to the approval of this immune-stimulating molecule for cancer therapy. However, besides immune stimulation, GM-CSF may also accelerate tumor cell proliferation, rendering this molecule a double-edged sword in cancer treatment. Therefore, detailed knowledge about the in vitro function of GM-CSF produced by infected tumor cells is urgently needed prior to investigations in an in vivo model. The aim of the present study was to functionally characterize a persistent infection of canine histiocytic sarcoma cells (DH82 cells) with the canine distemper virus strain Onderstepoort genetically engineered to express canine GM-CSF (CDV-Ondneon-GM-CSF). The investigations aimed (1) to prove the overall functionality of the virally induced production of GM-CSF and (2) to determine the effect of GM-CSF on the proliferation and motility of canine HS cells. Infected cells consistently produced high amounts of active, pH-stable GM-CSF, as demonstrated by increased proliferation of HeLa cells. By contrast, DH82 cells lacked increased proliferation and motility. The significantly increased secretion of GM-CSF by persistently CDV-Ondneon-GM-CSF-infected DH82 cells, the pH stability of this protein, and the lack of detrimental effects on DH82 cells renders this virus strain an interesting candidate for future studies aiming to enhance the oncolytic properties of CDV for the treatment of canine histiocytic sarcomas.
Collapse
Affiliation(s)
- Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Thanaporn Asawapattanakul
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Vanessa Maria Nippold
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Philippe Plattet
- Division of Experimental Clinical Research, Vetsuisse University Bern, 3012 Bern, Switzerland
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 901 87 Umeå, Sweden
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
4
|
Behzadi A, imani S, Deravi N, Mohammad Taheri Z, mohammadian F, moraveji Z, Shavysi S, Mostafaloo M, Soleimani Hadidi F, Nanbakhsh S, Olangian-Tehrani S, Marabi MH, behshood P, Poudineh M, Kheirandish A, Keylani K, Behfarnia P. Antiviral Potential of Melissa officinalis L.: A Literature Review. Nutr Metab Insights 2023; 16:11786388221146683. [PMID: 36655201 PMCID: PMC9841880 DOI: 10.1177/11786388221146683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
The use of synthetic drugs has increased in recent years; however, herbal medicine is yet more trusted among a huge population worldwide; This could be due to minimal side effects, affordable prices, and traditional beliefs. Lemongrass (Melissa officinalis) has been widely used for reducing stress and anxiety, increasing appetite and sleep, reducing pain, healing wounds, and treating poisonous insect bites and bee stings for a long time. Today, research has shown that this plant can also fight viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Herpes Simplex Virus (HSV), and Human Immunodeficiency Virus (HIV) through various mechanisms such as inhibiting HSV-1 from binding to host cell, inhibiting HSV-1 replication during the post-adsorption or inhibiting main protease and spike protein of SARS-CoV-2, furthermore, be effective in treating related diseases. This Review investigated the antiviral properties of Melissa officinalis and its effect on viral diseases. More in vitro and in vivo studies are needed to determine Melissa officinaliss underlying mechanism, and more randomized controlled trials should be done to identify its effect in humans. Also, due to the usefulness and lack of side effects, it can be used more as a complementary medicine.
Collapse
Affiliation(s)
- Amirhossein Behzadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sadegh imani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - fatemeh mohammadian
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - zahra moraveji
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Shavysi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahareh Mostafaloo
- School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Fateme Soleimani Hadidi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Isfahan, Iran
| | | | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Behfarnia
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Verhaar N, de Buhr N, von Köckritz-Blickwede M, Dümmer K, Hewicker-Trautwein M, Pfarrer C, Dengler F, Kästner S. Hypoxia signaling in the equine small intestine: Expression and distribution of hypoxia inducible factors during experimental ischemia. Front Vet Sci 2023; 10:1110019. [PMID: 36908508 PMCID: PMC9998946 DOI: 10.3389/fvets.2023.1110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Hypoxia inducible factors (HIF) are widely researched in human medicine for their role in different disease processes. The aim of this study was to investigate the expression and distribution of HIF in experimental small intestinal ischemia in the horse. Methods In 14 horses under general anesthesia, segmental jejunal ischemia with 90% reduction in blood flow was induced. The horses were randomly divided into two groups of seven horses, one subjected to ischemic postconditioning (IPoC) by delayed reperfusion, and a control group (group C) undergoing undelayed reperfusion. Intestinal samples were taken pre-ischemia, after ischemia and after reperfusion. Following immunohistochemical staining for HIF1α and -2α, the immunoreactivity pattern in the small intestine was evaluated by light microscopy, and the mucosal enterocyte and muscularis staining were semi-quantitatively scored. Additionally, mucosal HIF1α protein levels were determined by an Enzyme Linked Immunosorbent Assay (ELISA), and mRNA levels of HIF1α and its target genes by a two-step real-time Reverse Transcriptase Polymerase Chain Reaction. Statistical comparison was performed between the groups and time points using parametric and non-parametric tests (p < 0.05). Results All cell types exhibited cytoplasmic and nuclear immunoreactivity for HIF1α. After reperfusion, the cytoplasmic staining of the crypt and villus enterocytes as well as the villus nuclear staining significantly increased, whereas the perinuclear granules in the crypts decreased. The protein levels showed a significant decrease in group C at reperfusion, with lower HIF1α levels in group C compared to group IPoC during ischemia and reperfusion. No other group differences could be detected. In the HIF2α stained slides, mild to moderate cytoplasmic staining yet no nuclear immunoreactivity of the enterocytes was observed, and no significant changes over time were noted. Discussion the changes in HIF1α immunoreactivity pattern and expression over time suggest that this transcription factor plays a role in the intestinal response to ischemia in horses. However, the current study could not identify an effect of IPoC on HIF distribution or expression.
Collapse
Affiliation(s)
- Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Dümmer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Marek K, Armando F, Nippold VM, Rohn K, Plattet P, Brogden G, Gerold G, Baumgärtner W, Puff C. Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor. Int J Mol Sci 2022; 23:ijms23116156. [PMID: 35682834 PMCID: PMC9181094 DOI: 10.3390/ijms23116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.
Collapse
Affiliation(s)
- Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Vanessa Maria Nippold
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Philippe Plattet
- Division of Experimental Clinical Research, Vetsuisse University Bern, 3012 Bern, Switzerland;
| | - Graham Brogden
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 901 87 Umeå, Sweden
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence:
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| |
Collapse
|
7
|
Reisfeld L, Fernandes NCCA, Sarmiento A, Canedo P, Salvagni F, Ewbank AC, Zecchini Barrese T, Cilento Ponce C, Albergaria Ressio R, Catão-Dias JL, Sacristán C. Myeloid and histiocytic sarcomas in subantarctic fur seals Arctocephalus tropicalis, Brazil. DISEASES OF AQUATIC ORGANISMS 2022; 148:13-18. [PMID: 35142294 DOI: 10.3354/dao03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histopathological and immunohistochemical methods were used to diagnose round cell tumors in 2 subantarctic fur seals Arctocephalus tropicalis with marked anemia. Although wild-born, both individuals were placed under human care while juveniles in a Brazilian aquarium. Both pinnipeds were PCR tested for herpesvirus, and 1 was infected with otariid gammaherpesvirus 5 (OtHV-5), previously described in a subantarctic fur seal stranded in Brazil. Although some gammaherpesviruses can cause sarcomas and other neoplasms, it was not possible to definitively associate OtHV-5 with the neoplasm. To our knowledge, these are the first neoplasm records in subantarctic fur seals.
Collapse
Affiliation(s)
- Laura Reisfeld
- Aquário de São Paulo, São Paulo, Rua Huet Bacelar 407, 04275-000 SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
SRC-3 Knockout Attenuates Myocardial Injury Induced by Chronic Intermittent Hypoxia in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6372430. [PMID: 34777690 PMCID: PMC8580638 DOI: 10.1155/2021/6372430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
This study investigated the effects of chronic intermittent hypoxia (CIH), a model of sleep apnea syndrome (SAS), on cardiac function. SRC-3 was extremely lowly expressed in the adult mouse heart tissue, while SRC-3 was highly expressed in the adult mouse heart tissue after CIH, suggesting that SRC-3 is involved in CIH model. We further studied the role of SRC-3 in CIH-induced myocardial injury in mice. Twenty-four healthy Balb/c male mice (n = 16, wild type; n = 8, SRC-3 knockout (SRC3-KO)) were randomly divided into three groups: air control (Ctrl), CIH, and CIH+SRC3-KO. Mice were exposed to CIH for 12 weeks. qRT-PCR was used to evaluate cardiac expression of the following genes: 11HSD1, 11HSD2, GR, MR, COX-2, OPN, NOX2, HIF-1-α, IL-1β, IL-6, iNOS, TNF-α, PC-1, and TGF-β. Enzymatic levels of SOD, CAT, MDA, NOS, and NO in the mouse hearts were determined using commercially available kits. Immunohistochemistry (IHC) was used to evaluate NF-κB expression in cardiac tissues. A transmission electron microscope (TEM) was used to evaluate myocardial ultrastructure. TUNEL staining was used to assess myocardial cell apoptosis. CIH induced cardiac damage, which was ameliorated in the SRC-3 KO mice. CIH significantly increased the heart-to-body weight ratio, expression of all aforementioned genes except 11HSD1, GR, and MR, and increased the levels of MDA, NOS, NO, and NF-κB, which were attenuated in the SRC-3 KO mice. The CIH group had the lowest SOD and CAT levels, which were partially recovered in the CIH+SRC3-KO group. 11HSD2 gene expression was elevated in both the CIH and CIH+SRC3-KO groups compared to the Ctrl group. The CIH group had severe myocardial cell apoptosis and mitochondrial dysfunction, which were alleviated in the CIH+SRC3-KO group. CIH causes cardiac damage through inducing oxidative stress and inflammation. Knockout of SRC-3 ameliorates CIH-induced cardiac damage through antagonizing CIH-triggered molecular changes in cardiac tissue.
Collapse
|
9
|
Krüger N, Rocha C, Runft S, Krüger J, Färber I, Armando F, Leitzen E, Brogden G, Gerold G, Pöhlmann S, Hoffmann M, Baumgärtner W. The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:10636. [PMID: 34638978 PMCID: PMC8508926 DOI: 10.3390/ijms221910636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.
Collapse
Affiliation(s)
- Nadine Krüger
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Iris Färber
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| | - Graham Brogden
- Department of Biochemistry, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, 30625 Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, 30625 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; (C.R.); (S.P.); (M.H.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (S.R.); (J.K.); (I.F.); (F.A.); (E.L.); (W.B.)
| |
Collapse
|
10
|
Armando F, Fayyad A, Arms S, Barthel Y, Schaudien D, Rohn K, Gambini M, Lombardo MS, Beineke A, Baumgärtner W, Puff C. Intratumoral Canine Distemper Virus Infection Inhibits Tumor Growth by Modulation of the Tumor Microenvironment in a Murine Xenograft Model of Canine Histiocytic Sarcoma. Int J Mol Sci 2021; 22:ijms22073578. [PMID: 33808256 PMCID: PMC8037597 DOI: 10.3390/ijms22073578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Histiocytic sarcomas refer to highly aggressive tumors with a poor prognosis that respond poorly to conventional treatment approaches. Oncolytic viruses, which have gained significant traction as a cancer therapy in recent decades, represent a promising option for treating histiocytic sarcomas through their replication and/or by modulating the tumor microenvironment. The live attenuated canine distemper virus (CDV) vaccine strain Onderstepoort represents an attractive candidate for oncolytic viral therapy. In the present study, oncolytic virotherapy with CDV was used to investigate the impact of this virus infection on tumor cell growth through direct oncolytic effects or by virus-mediated modulation of the tumor microenvironment with special emphasis on angiogenesis, expression of selected MMPs and TIMP-1 and tumor-associated macrophages in a murine xenograft model of canine histiocytic sarcoma. Treatment of mice with xenotransplanted canine histiocytic sarcomas using CDV induced overt retardation in tumor progression accompanied by necrosis of neoplastic cells, increased numbers of intratumoral macrophages, reduced angiogenesis and modulation of the expression of MMPs and TIMP-1. The present data suggest that CDV inhibits tumor growth in a multifactorial way, including direct cell lysis and reduction of angiogenesis and modulation of MMPs and their inhibitor TIMP-1, providing further support for the concept of its role in oncolytic therapies.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| | - Adnan Fayyad
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
- Department of Veterinary Medicine, An-Najah National University, Nablus 9720061, Palestine
| | - Stefanie Arms
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany;
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Mara Sophie Lombardo
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
- Correspondence: ; Tel.: +49-511-953-8620
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (A.F.); (S.A.); (Y.B.); (M.G.); or (M.S.L.); (A.B.); (C.P.)
| |
Collapse
|
11
|
Sophocleous RA, Miles NA, Ooi L, Sluyter R. P2Y 2 and P2X4 Receptors Mediate Ca 2+ Mobilization in DH82 Canine Macrophage Cells. Int J Mol Sci 2020; 21:ijms21228572. [PMID: 33202978 PMCID: PMC7696671 DOI: 10.3390/ijms21228572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5'-triphosphate (ATP) or uridine 5'-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicole Ashleigh Miles
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
12
|
Armando F, Gambini M, Corradi A, Becker K, Marek K, Pfankuche VM, Mergani AE, Brogden G, de Buhr N, von Köckritz-Blickwede M, Naim HY, Baumgärtner W, Puff C. Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro. J Cell Mol Med 2020; 24:9332-9348. [PMID: 32627957 PMCID: PMC7417708 DOI: 10.1111/jcmm.15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV‐infected cells exhibited an increased expression of epithelial markers such as E‐cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Dipartimento di Medicina Veterinaria (DIMEVET), Universitá degli Studi di Milano, Lodi, Italy
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ahmed Elmonastir Mergani
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Hannover, Germany, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Yousaf I, Kaeppler J, Frost S, Seymour LW, Jacobus EJ. Attenuation of the Hypoxia Inducible Factor Pathway after Oncolytic Adenovirus Infection Coincides with Decreased Vessel Perfusion. Cancers (Basel) 2020; 12:E851. [PMID: 32244697 PMCID: PMC7225929 DOI: 10.3390/cancers12040851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
The interplay between oncolytic virus infection and tumour hypoxia is particularly unexplored in vivo, although hypoxia is present in virtually all solid carcinomas. In this study, oncolytic adenovirus infection foci were found within pimonidazole-reactive, oxygen-poor areas in a colorectal xenograft tumour, where the expression of VEGF, a target gene of the hypoxia-inducible factor (HIF), was attenuated. We hypothesised that adenovirus infection interferes with the HIF-signalling axis in the hypoxic tumour niche, possibly modifying the local vascular supply. In vitro, enadenotucirev (EnAd), adenovirus 11p and adenovirus 5 decreased the protein expression of HIF-1α only during the late phase of the viral life cycle by transcriptional down-regulation and not post-translational regulation. The decreasing HIF levels resulted in the down-regulation of angiogenic factors such as VEGF, coinciding with reduced endothelial tube formation but also increased T-cell activation in conditioned media transfer experiments. Using intravital microscopy, a decreased perfused vessel volume was observed in infected tumour nodules upon systemic delivery of EnAd, encoding the oxygen-independent fluorescent reporter UnaG to a tumour xenograft grown under an abdominal window chamber. We conclude that the attenuation of the HIF pathway upon adenoviral infection may contribute to anti-vascular and immunostimulatory effects in the periphery of established infection foci in vivo.
Collapse
Affiliation(s)
- Iris Yousaf
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Jakob Kaeppler
- Mechanisms of Metastasis Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Sally Frost
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Len W. Seymour
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Egon J. Jacobus
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| |
Collapse
|
14
|
Lin LT. Special Issue "Recent Advances in Morbillivirus Vaccine Development and Oncolytic Virotherapy". Viruses 2020; 12:v12030341. [PMID: 32245003 PMCID: PMC7150848 DOI: 10.3390/v12030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Members of the Morbillivirus genus are enveloped, negative-strand RNA viruses that include a number of highly contagious pathogens important to humans and animals. They are known to be transmitted via the respiratory route and cause febrile diseases that can be fatal. Despite the availability of attenuated vaccines against several members, these viruses remain responsible for significant morbidity and mortality in their natural hosts worldwide. The development of molecular biology techniques over the past decades has helped increase the understanding of morbillivirus pathogenesis and explore the possibility to engineer their genomes as viral vectors. This Special Issue of Viruses explores recent advances in recombinant morbilliviruses platforms, especially measles virus (MV) and canine distemper virus (CDV), for novel vaccine development and oncolytic virotherapy against cancers. Topics in this special issue include parameters involved during the viral vector production, strategies of viral vector engineering, and the underlying mechanisms of the therapeutic effects exhibited by these vectors.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; ; Tel.: +886-2-2736-1661 (ext. 3911)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|