1
|
Chaiyasak S, Piewbang C, Ratthanophart J, Techakriengkrai N, Rattanaporn K, Techangamsuwan S. Detection of Antibodies against Feline Morbillivirus by Recombinant Matrix Enzyme-Linked Immunosorbent Assay. Viruses 2024; 16:1339. [PMID: 39205313 PMCID: PMC11358928 DOI: 10.3390/v16081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Feline morbillivirus (FeMV) has been associated with feline health, although its exact role in pathogenesis is still debated. In this study, an indirect enzyme-linked immunosorbent assay (i-ELISA) targeting a recombinant matrix protein of FeMV (rFeMV-M) was developed and assessed in comparison to a Western blotting (WB) assay. The i-ELISA was evaluated using blood samples from 136 cats that were additionally tested with real-time reverse-transcription PCR (RT-qPCR). The i-ELISA exhibited a sensitivity of 90.1%, specificity of 75.6%, positive predictive value of 88.2%, and negative predictive value of 79.1%. The agreement between i-ELISA and WB analyses was substantial (a κ coefficient of 0.664 with a 95% confidence interval of 0.529 to 0.799). Within the study group, 68.4% (93/136) of the cats were serologically positive in the i-ELISA and 66.9% (91/136) in the WB assay, with 11.8% (11/93) of false positivity with the i-ELISA. However, only 8.1% (11/136) of the cats tested positive for FeMV using RT-qPCR (p < 0.001). The developed i-ELISA proved effective in identifying FeMV-infected cats and indicated the prevalence of FeMV exposure. Combining FeMV antibody detection through i-ELISA with FeMV RT-qPCR could offer a comprehensive method to determine and monitor FeMV infection status. Nevertheless, this assay still requires refinement due to a significant number of false positive results, which can lead to the misdiagnosis of cats without antibodies as having antibodies. This study also provided the first evidence of seroprevalence against FeMV among cat populations in Thailand, contributing valuable insights into the geographic distribution and prevalence of this virus.
Collapse
Affiliation(s)
- Surangkanang Chaiyasak
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Veterinary Infectious Diseases Research Unit, Faculty of Veterinary Science, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jadsada Ratthanophart
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand;
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Xu JL, Chen JT, Hu B, Guo WW, Guo JJ, Xiong CR, Qin LX, Yu XN, Chen XM, Cai K, Li YR, Liu MQ, Chen LJ, Hou W. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb Genom 2024; 10:001229. [PMID: 38700925 PMCID: PMC11145887 DOI: 10.1099/mgen.0.001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.
Collapse
Affiliation(s)
- Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jin-tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Wei-wei Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jing-jing Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Chao-rui Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Ling-xin Qin
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xin-nai Yu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xiao-min Chen
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
3
|
Ito G, Tabata S, Matsuu A, Hatai H, Goto-Koshino Y, Kuramoto T, Doi S, Momoi Y. Detection of feline morbillivirus in cats with symptoms of acute febrile infection. Vet Res Commun 2024; 48:569-578. [PMID: 37672171 PMCID: PMC10811173 DOI: 10.1007/s11259-023-10214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Feline morbillivirus (FeMV) was identified for the first time in cats in 2012 in Hong Kong. Although its association with chronic kidney disease in cats has attracted the attention of researchers, its clinical significance as an acute infection has not been reported. Previously, we reported FeMV detection using next-generation sequence-based comprehensive genomic analysis of plasma samples from cats with suspected acute febrile infections. Here, we conducted an epidemiological survey to detect FeMV by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using blood samples from cats in Japan. FeMV was detected in 32/102 blood samples (31.4%) from cats with suspected acute viral infections. Most of the FeMV-positive cats had clinical findings consistent with acute viral infections, including fever, leukopenia, thrombocytopenia and jaundice. No FeMV was detected in healthy cats or clinically ill cats that visited veterinary hospitals. Phylogenetic analysis classified FeMV L genes into various FeMV subtypes. We also necropsied a FeMV-positive cat that died of a suspected acute infection. On necropsy, FeMV was detected in systemic organs, including the kidneys, lymph nodes and spleen by qRT-PCR and immunohistochemical staining. These results suggest that FeMV infections may cause acute symptomatic febrile infections in cats. A limitation of this study was that the involvement of other pathogens that cause febrile illnesses could not be ruled out and this prevented a definitive conclusion that FeMV causes febrile disease in infected cats. Further studies that include experimental infections are warranted to determine the pathogenicity of FeMV in cats.
Collapse
Affiliation(s)
- Genta Ito
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shoichi Tabata
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Hitoshi Hatai
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Farm Animal Clinical Skills and Disease Control Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yuko Goto-Koshino
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohide Kuramoto
- Kagoshima University Veterinary Teaching Hospital, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Sakiko Doi
- Sanritsu Zelkova Co., Ltd., 3-5-5 Ogibashi, Koto-ku, Tokyo, 113-0011, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
5
|
Su H, Wang Y, Han Y, Jin Q, Yang F, Wu Z. Discovery and characterization of novel paramyxoviruses from bat samples in China. Virol Sin 2023; 38:198-207. [PMID: 36649817 PMCID: PMC10176441 DOI: 10.1016/j.virs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023] Open
Abstract
Many paramyxoviruses are responsible for a variety of mild to severe human and animal diseases. Based on the novel discoveries over the past several decades, the family Paramyxoviridae infecting various hosts across the world includes 4 subfamilies, 17 classified genera and 78 species now. However, no systematic surveys of bat paramyxoviruses are available from the Chinese mainland. In this study, 13,064 samples from 54 bat species were collected and a comprehensive paramyxovirus survey was conducted. We obtained 94 new genome sequences distributed across paramyxoviruses from 22 bat species in seven provinces. Bayesian phylodynamic and phylogenetic analyses showed that there were four different lineages in the Jeilongvirus genus. Based on available data, results of host and region switches showed that the bat colony was partial to interior, whereas the rodent colony was exported, and the felines and hedgehogs were most likely the intermediate hosts from Scotophilus spp. rather than rodents. Based on the evolutionary trend, genus Jeilongvirus may have originated from Mus spp. in Australia, then transmitted to bats and rodents in Africa, Asia and Europe, and finally to bats and rodents in America.
Collapse
Affiliation(s)
- Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Pei Y, Xue J, Teng Q, Feng D, Huang M, Liang R, Li X, Zhao Y, Zhao J, Zhang G. Mutation of Phenylalanine 23 of Newcastle Disease Virus Matrix Protein Inhibits Virus Release by Disrupting the Interaction between the FPIV L-Domain and Charged Multivesicular Body Protein 4B. Microbiol Spectr 2023; 11:e0411622. [PMID: 36695580 PMCID: PMC9927168 DOI: 10.1128/spectrum.04116-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The matrix (M) protein FPIV L-domain is conserved among multiple paramyxoviruses; however, its function and the associated mechanism remain unclear. In this study, the paramyxovirus Newcastle disease virus (NDV) was employed to study the FPIV L-domain. Two recombinant NDV strains, each carrying a single amino acid mutation at the Phe (F23) or Pro (P24) site of 23FPIV/I26 L-domain, were rescued. Growth defects were observed in only the recombinant SG10-F23A (rSG10-F23A) strain. Subsequent studies focused on rSG10-F23A revealed that the virulence, pathogenicity, and replication ability of this strain were all weaker than those of wild-type strain rSG10 and that a budding deficiency contributed to those weaknesses. To uncover the molecular mechanism underlying the rSG10-F23A budding deficiency, the bridging proteins between the FPIV L-domain and endosomal sorting complex required for transported (ESCRT) machinery were explored. Among 17 candidate proteins, only the charged multivesicular body protein 4 (CHMP4) paralogues were found to interact more strongly with the NDV wild-type M protein (M-WT) than with the mutated M protein (M-F23A). Overexpression of M-WT, but not of M-F23A, changed the CHMP4 subcellular location to the NDV budding site. Furthermore, a knockdown of CHMP4B, the most abundant CHMP4 protein, inhibited the release of rSG10 but not that of rSG10-F23A. From these findings, we can reasonably infer that the F23A mutation of the FPIV L-domain blocks the interaction between the NDV M protein and CHMP4B and that this contributes to the budding deficiency and consequent growth defects of rSG10-F23A. This work lays the foundation for further study of the FPIV L-domain in NDV and other paramyxoviruses. IMPORTANCE Multiple viruses utilize a conserved motif, termed the L-domain, to act as a cellular adaptor for recruiting host ESCRT machinery to their budding site. Despite the FPIV type L-domain having been identified in some paramyxoviruses 2 decades ago, its function in virus life cycles and its method of recruiting the ESCRT machinery are poorly understood. In this study, a single amino acid mutation at the F23 site of the 23FPIV26 L-domain was found to block NDV budding at the late stage. Furthermore, CHMP4B, a core component of the ESCRT-III complex, was identified as a main factor that links the FPIV L-domain and ESCRT machinery together. These results extend previous understanding of the FPIV L-domain and, therefore, not only provide a new approach for attenuating NDV and other paramyxoviruses but also lay the foundation for further study of the FPIV L-domain.
Collapse
Affiliation(s)
- Yu Pei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingyuan Teng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Delan Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Liang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps. mBio 2022; 13:e0322221. [PMID: 35506666 PMCID: PMC9239137 DOI: 10.1128/mbio.03222-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paramyxoviridae family comprises important pathogens that include measles (MeV), mumps, parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). Paramyxoviral entry into cells requires viral-cell membrane fusion, and formation of paramyxoviral pathognomonic syncytia requires cell-cell membrane fusion. Both events are coordinated by intricate interactions between the tetrameric attachment (G/H/HN) and trimeric fusion (F) glycoproteins. We report that receptor binding induces conformational changes in NiV G that expose its stalk domain, which triggers F through a cascade from prefusion to prehairpin intermediate (PHI) to postfusion conformations, executing membrane fusion. To decipher how the NiV G stalk may trigger F, we introduced cysteines along the G stalk to increase tetrameric strength and restrict stalk mobility. While most point mutants displayed near-wild-type levels of cell surface expression and receptor binding, most yielded increased NiV G oligomeric strength, and showed remarkably strong defects in syncytium formation. Furthermore, most of these mutants displayed stronger F/G interactions and significant defects in their ability to trigger F, indicating that NiV G stalk mobility is key to proper F triggering via moderate G/F interactions. Also remarkably, a mutant capable of triggering F and of fusion pore formation yielded little syncytium formation, implicating G or G/F interactions in a late step occurring post fusion pore formation, such as the extensive fusion pore expansion required for syncytium formation. This study uncovers novel mechanisms by which the G stalk and its oligomerization/mobility affect G/F interactions, the triggering of F, and a late fusion pore expansion step-exciting novel findings for paramyxoviral attachment glycoproteins. IMPORTANCE The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. NiV has two surface proteins, the receptor binding protein (G) and fusion (F) glycoproteins. They mediate the required membrane fusion during viral entry into host cells and during syncytium formation, a hallmark of paramyxoviral and NiV infections. We previously discovered that the G stalk domain is important for triggering F (via largely unknown mechanisms) to induce membrane fusion. Here, we uncovered new roles and mechanisms by which the G stalk and its mobility modulate the triggering of F and also unexpectedly affect a very late step in membrane fusion, namely fusion pore expansion. Importantly, these novel findings may extend to other paramyxoviruses, offering new potential targets for therapeutic interventions.
Collapse
|
8
|
Shyfrin SR, Ferren M, Perrin-Cocon L, Espi M, Charmetant X, Brailly M, Decimo D, Iampietro M, Canus L, Horvat B, Lotteau V, Vidalain PO, Thaunat O, Mathieu C. Hamster organotypic kidney culture model of early-stage SARS-CoV-2 infection highlights a two-step renal susceptibility. J Tissue Eng 2022; 13:20417314221122130. [PMID: 36093433 PMCID: PMC9452794 DOI: 10.1177/20417314221122130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022] Open
Abstract
Kidney pathology is frequently reported in patients hospitalized with COVID-19, the pandemic disease caused by the Severe acute respiratory coronavirus 2 (SARS-CoV-2). However, due to a lack of suitable study models, the events occurring in the kidney during the earliest stages of infection remain unknown. We have developed hamster organotypic kidney cultures (OKCs) to study the early stages of direct renal infection. OKCs maintained key renal structures in their native three-dimensional arrangement. SARS-CoV-2 productively replicated in hamster OKCs, initially targeting endothelial cells and later disseminating into proximal tubules. We observed a delayed interferon response, markers of necroptosis and pyroptosis, and an early repression of pro-inflammatory cytokines transcription followed by a strong later upregulation. While it remains an open question whether an active replication of SARS-CoV-2 takes place in the kidneys of COVID-19 patients with AKI, our model provides new insights into the kinetics of SARS-CoV-2 kidney infection and can serve as a powerful tool for studying kidney infection by other pathogens and testing the renal toxicity of drugs.
Collapse
Affiliation(s)
- Sophie R Shyfrin
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maxime Espi
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manon Brailly
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Didier Decimo
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lola Canus
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Team Normal and pathogenic B cell responses, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Team Immunobiology of the Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
9
|
Donato G, Masucci M, De Luca E, Alibrandi A, De Majo M, Berjaoui S, Martino C, Mangano C, Lorusso A, Pennisi MG. Feline Morbillivirus in Southern Italy: Epidemiology, Clinico-Pathological Features and Phylogenetic Analysis in Cats. Viruses 2021; 13:v13081449. [PMID: 34452315 PMCID: PMC8402783 DOI: 10.3390/v13081449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Feline morbillivirus (FeMV) was isolated for the first time in 2012 with an association with chronic kidney disease (CKD) suggested. This study aimed at investigating in cats from southern Italy FeMV prevalence and risk factors for exposure to FeMV, including the relationship with CKD; sequencing amplicons and analyzing phylogeny of PCR positive samples. Blood serum, K3EDTA blood and urine samples from 223 cats were investigated. Ten carcasses were also evaluated. FeMV RNA was detected in 2.4% (5/211) blood and 16.1% (36/223) urine samples. One carcass tested positive by qPCRFeMV from kidney, urinary bladder, and submandibular lymph nodes. Antibodies against FeMV were detected in 14.5% (28/193) cats. We followed up 27 cats (13 FeMV positive cats) and documented in some cases urine shedding after up to 360 days. Older and foundling cats and cats living in rescue catteries, were more frequently infected with FeMV. A significant correlation between FeMV and higher serum creatinine values or low urine specific gravity was found. FeMV positivity was significantly associated with retroviral infection, and the presence of some clinical signs apart from CKD clinicopathological markers. Our study highlights the possibility of a link between FeMV exposure and CKD and a general impairment of feline health.
Collapse
Affiliation(s)
- Giulia Donato
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
- Correspondence:
| | - Marisa Masucci
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Angela Alibrandi
- Department of Economy, University of Messina, 98168 Messina, Italy;
| | - Massimo De Majo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Cyndi Mangano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Maria Grazia Pennisi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| |
Collapse
|
10
|
Beatty JA, Hartmann K. Advances in Feline Viruses and Viral Diseases. Viruses 2021; 13:v13050923. [PMID: 34067533 PMCID: PMC8156448 DOI: 10.3390/v13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Julia A. Beatty
- Department of Veterinary Clinical Sciences and Centre for Companion Animal Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Hong Kong, China
- Correspondence:
| | - Katrin Hartmann
- Medizinische Kleintierklinik, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
11
|
C Protein is Essential for Canine Distemper Virus Virulence and Pathogenicity in Ferrets. J Virol 2021; 95:JVI.01840-20. [PMID: 33239455 PMCID: PMC7851556 DOI: 10.1128/jvi.01840-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Paramyxoviruses, including members of the genus Morbillivirus, express accessory proteins with ancillary functions during viral replication. One of these, the C protein, is expressed from an alternate open reading frame (ORF) located in the P gene. The measles virus (MeV) C protein has been implicated in modulation of interferon signaling, but has more recently been shown to play a vital role in regulation of viral transcription and replication, preventing the excessive production of double-stranded RNA. Failure to do so, as seen with C-deficient MeV, leads to early activation of innate immune responses resulting in restriction of viral replication and attenuation in the host. One puzzling aspect of morbillivirus C protein biology has been the finding that a C-deficient canine distemper virus (CDV) generated with a similar mutagenesis strategy displayed no attenuation in ferrets, an animal model commonly used to evaluate CDV pathogenesis. To resolve how virus lacking this protein could maintain virulence, we re-visited the CDV C protein and found that truncated C proteins are expressed from the CDV gene using alternative downstream start codons even when the first start codon was disrupted. We introduced an additional point mutation abrogating expression of these truncated C proteins. A new CDV with this mutation was attenuated in vitro and led to increased activation of protein kinase R. It was also strongly attenuated in ferrets, inducing only mild disease in infected animals, thus replicating the phenotype of C-deficient MeV. Our results demonstrate the crucial role of morbillivirus C proteins in pathogenesis.IMPORTANCE The measles (MeV) and canine distemper viruses (CDV) express accessory proteins that regulate the host immune response and enhance replication. The MeV C protein is critical in preventing the generation of excess immunostimulatory double-stranded RNA. C protein-deficient MeV is strongly attenuated compared to wild-type virus, whereas CDV with a similarly disrupted C open reading frame is fully pathogenic. Here we show that CDV can compensate the disrupting mutations by expression of truncated, but apparently functional C proteins from several alternative start codons. We generated a new recombinant CDV that does not express these truncated C protein. This virus was attenuated both in cell culture and in ferrets, and finally resolves the paradox of the MeV and CDV C proteins, showing that both in fact have similar functions important for viral pathogenesis.
Collapse
|