1
|
Rastegar S, Skurnik M, Niaz H, Tadjrobehkar O, Samareh A, Hosseini-Nave H, Sabouri S. Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains. Virus Genes 2024; 60:725-736. [PMID: 39256307 DOI: 10.1007/s11262-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of Acinetobacter baumannii. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three Acinetobacter phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR A. baumannii strains. The phages exhibited siphovirus morphology. Out of a total of 30 XDR A. baumannii isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of A. baumannii. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616913439, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024; 16:771. [PMID: 38793652 PMCID: PMC11126041 DOI: 10.3390/v16050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia S. Sukhova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Nikolay A. Tkachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Yuriy P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| |
Collapse
|
3
|
Peters DL, Gaudreault F, Chen W. Functional domains of Acinetobacter bacteriophage tail fibers. Front Microbiol 2024; 15:1230997. [PMID: 38690360 PMCID: PMC11058221 DOI: 10.3389/fmicb.2024.1230997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
A rapid increase in antimicrobial resistant bacterial infections around the world is causing a global health crisis. The Gram-negative bacterium Acinetobacter baumannii is categorized as a Priority 1 pathogen for research and development of new antimicrobials by the World Health Organization due to its numerous intrinsic antibiotic resistance mechanisms and ability to quickly acquire new resistance determinants. Specialized phage enzymes, called depolymerases, degrade the bacterial capsule polysaccharide layer and show therapeutic potential by sensitizing the bacterium to phages, select antibiotics, and serum killing. The functional domains responsible for the capsule degradation activity are often found in the tail fibers of select A. baumannii phages. To further explore the functional domains associated with depolymerase activity, tail-associated proteins of 71 sequenced and fully characterized phages were identified from published literature and analyzed for functional domains using InterProScan. Multisequence alignments and phylogenetic analyses were conducted on the domain groups and assessed in the context of noted halo formation or depolymerase characterization. Proteins derived from phages noted to have halo formation or a functional depolymerase, but no functional domain hits, were modeled with AlphaFold2 Multimer, and compared to other protein models using the DALI server. The domains associated with depolymerase function were pectin lyase-like (SSF51126), tailspike binding (cd20481), (Trans)glycosidases (SSF51445), and potentially SGNH hydrolases. These findings expand our knowledge on phage depolymerases, enabling researchers to better exploit these enzymes for therapeutic use in combating the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Danielle L. Peters
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada
| | | | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Rastegar S, Sabouri S, Tadjrobehkar O, Samareh A, Niaz H, Sanjari N, Hosseini-Nave H, Skurnik M. Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. Pathog Dis 2024; 82:ftae028. [PMID: 39435653 PMCID: PMC11536755 DOI: 10.1093/femspd/ftae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections globally. The increasing prevalence of multidrug-resistant (MDR) A. baumannii has become an important public health concern. To combat drug resistance, alternative methods such as phage therapy have been suggested. In total, 30 MDR A. baumannii strains were isolated from clinical specimens, and their antibiotic susceptibilities were determined. The Acinetobacter phage vB_AbaS_SA1, isolated from hospital sewage, was characterized. In addition to its plaque size, particle morphology, and host range, its genome sequence was determined and annotated. Finally, the antibacterial effects of phage alone, antibiotics alone, and phage/antibiotic combinations were assessed against the A. baumannii strains. Phage vB_AbaS_SA1 had siphovirus morphology, showed a latent period of 20 min, and a 250 PFU/cell (plaque forming unit/cell) burst size. When combined with antibiotics, vB_AbaS_SA1 (SA1) showed a significant phage-antibiotic synergy effect and reduced the overall effective concentration of antibiotics in time-kill assessments. The genome of SA1 is a linear double-stranded DNA of 50 108 bp in size with a guanine-cytosine (GC) content of 39.15%. Despite the potent antibacterial effect of SA1, it is necessary to perform additional research to completely elucidate the mechanisms of action and potential constraints associated with utilizing this bacteriophage.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nafise Sanjari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Raees F, Harun A, Ahmed A, Deris ZZ. Potential Usefulness of Bacteriophages for the Treatment of Multidrug-Resistant Acinetobacter Infection. Malays J Med Sci 2023; 30:7-22. [PMID: 37928784 PMCID: PMC10624448 DOI: 10.21315/mjms2023.30.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/07/2023] Open
Abstract
Bacteriophages were discovered in early 20th century. However, the interest in bacteriophage research was reduced with the discovery of antibiotics. With the increasing number of infections due to multidrug-resistant (MDR) organisms, the potential usefulness of bacteriophages as therapeutic agents has been re-evaluated. In this review, we found that more than 30 lytic bacteriophages that infect Acinetobacter species have been characterised. These are mainly members of Caudovirales, with genome sizes ranging from 31 kb to 234 kb and G+C contents ranging from 33.5% to 45.5%. The host range can be as low as < 10% of all tested Acinetobacter strains. Fourteen published murine trials indicated positive outcomes in bacteriophage-treated groups. Only two case reports were pertaining to the use of bacteriophages in the treatment of Acinetobacter infections in humans; in both cases, the infections were resolved with bacteriophage therapy. The use of bacteriophages has been associated with reduced Acinetobacter burden in the environment, as shown in two studies. The major limitation of bacteriophage therapy is its highly selective host strain. In conclusion, the potential usefulness of bacteriophage therapy for the treatment of MDR Acinetobacter species has been documented only in limited studies and more research is needed prior to its extensive use in clinical practice.
Collapse
Affiliation(s)
- Fahad Raees
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Microbiology, College of Medicine, Umm al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdalla Ahmed
- Department of Microbiology, College of Medicine, Umm al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
6
|
Mardiana M, Teh SH, Tsai YC, Yang HH, Lin LC, Lin NT. Characterization of a novel and active temperate phage vB_AbaM_ABMM1 with antibacterial activity against Acinetobacter baumannii infection. Sci Rep 2023; 13:11347. [PMID: 37443351 PMCID: PMC10345192 DOI: 10.1038/s41598-023-38453-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that significantly causes hospital-acquired infections. Due to its multidrug resistance, treating infections caused by this pathogen is challenging. Recently, phages have gained attention as a potential alternative to antibiotics in treating bacterial infections. While lytic phages are preferred in therapy, the use of temperate phages for this purpose has received less attention. This study characterized a novel temperate phage vB_AbaM_ABMM1 (ABMM1) with antibacterial activity toward A. baumannii. ABMM1 adsorbs quickly, has short latent periods, and is relatively stable at various temperatures and neutral pH. ABMM1 has an icosahedral head and a contractile tail. It has a 75,731 kb circular permuted dsDNA genome containing 86 gene products with 37.3% G + C content and a mosaic arrangement typical of temperate phages. Genomic analysis confirmed that ABMM1 does not have antibiotic-resistance genes or virulence-related factors. The packaging strategy was predicted in silico, suggesting that ABMM1 represents a headful phage. Only truncated ABMM1 prophage was detected and has similarity in the genome of several A. baumannii strains. Despite its ability to integrate into the host chromosome, the high MOI of ABMM1 (MOI 10) effectively killed the host bacterial cells and reduced the fatality rate of bacterial infection in the zebrafish model. These findings indicate that ABMM1 can be an alternative treatment for A. baumannii infection.
Collapse
Affiliation(s)
- Meity Mardiana
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| | - Yun-Chan Tsai
- Department of Life Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Nien-Tsung Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| |
Collapse
|
7
|
Li Y, Xiao S, Huang G. Acinetobacter baumannii Bacteriophage: Progress in Isolation, Genome Sequencing, Preclinical Research, and Clinical Application. Curr Microbiol 2023; 80:199. [PMID: 37120784 PMCID: PMC10149043 DOI: 10.1007/s00284-023-03295-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a common nosocomial pathogen associated with serious clinical challenges owing to its rapidly increasing resistance to antibiotics. Due to their high host specificity and easy access to the natural environment, bacteriophages (phages) may serve as good antibacterial agents. Phage therapy has been successfully used to treat antibiotic-resistant A. baumannii infections. As a fundamental step before phage therapy, the characterization and sequencing of A. baumannii phages have been well studied. Until October 2022, 132 A. baumannii phages have been sequenced and studied, with their genomes ranging from 4 to 234 kb, and we summarize the characterized and sequenced A. baumannii phages. This review is a current and short overview that does not go into detail on the A. baumannii phages. In addition, preclinical studies and clinical applications of A. baumannii phages are also included.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
8
|
Pulami D, Schwabe L, Blom J, Schwengers O, Wilharm G, Kämpfer P, Glaeser SP. Genomic plasticity and adaptive capacity of the quaternary alkyl-ammonium compound and copper tolerant Acinetobacter bohemicus strain QAC-21b isolated from pig manure. Antonie Van Leeuwenhoek 2023; 116:327-342. [PMID: 36642771 PMCID: PMC10024671 DOI: 10.1007/s10482-022-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Here, we present the genomic characterization of an Acinetobacter bohemicus strain QAC-21b which was isolated in the presence of a quaternary alky-ammonium compound (QAAC) from manure of a conventional German pig farm. The genetic determinants for QAAC, heavy metal and antibiotic resistances are reported based of the whole genome shotgun sequence and physiological growth tests. A. bohemicus QAC-21b grew in a species typical manner well at environmental temperatures but not at 37 °C. The strain showed tolerance to QAACs and copper but was susceptible to antibiotics relevant for Acinetobacter treatments. The genome of QAC-21b contained several Acinetobacter typical QAAC and heavy metal transporting efflux pumps coding genes, but no key genes for acquired antimicrobial resistances. The high genomic content of transferable genetic elements indicates that this bacterium can be involved in the transmission of antimicrobial resistances, if it is released with manure as organic fertilizer on agricultural fields. The genetic content of the strain was compared to that of two other A. bohemicus strains, the type strain ANC 3994T, isolated from forest soil, and KCTC 42081, originally described as A. pakistanensis, a metal resistant strain isolated from a wastewater treatment pond. In contrast to the forest soil strain, both strains from anthropogenically impacted sources showed genetic features indicating their evolutionary adaptation to the anthropogenically impacted environments. Strain QAC-21b will be used as model strain to study the transmission of antimicrobial resistance to environmentally adapted Acinetobacter in agricultural environments receiving high content of pollutants with organic fertilizers from livestock husbandry.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Lina Schwabe
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Bagińska N, Harhala MA, Cieślik M, Orwat F, Weber-Dąbrowska B, Dąbrowska K, Górski A, Jończyk-Matysiak E. Biological Properties of 12 Newly Isolated Acinetobacter baumannii-Specific Bacteriophages. Viruses 2023; 15:231. [PMID: 36680270 PMCID: PMC9866556 DOI: 10.3390/v15010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Infections with the opportunistic Gram-negative bacterium Acinetobacter baumannii pose a serious threat today, which is aggravated by the growing problem of multi-drug resistance among bacteria, caused by the overuse of antibiotics. Treatment of infections caused by antibiotic-resistant A. baumannii strains with the use of phage therapy is not only a promising alternative, but sometimes the only option. Therefore, phages specific for clinical multi-drug resistant A. baumannii were searched for in environmental, municipal, and hospital wastewater samples collected from different locations in Poland. The conducted research allowed us to determine the biological properties and morphology of the tested phages. As a result of our research, 12 phages specific for A. baumannii, 11 of which turned out to be temperate and only one lytic, were isolated. Their lytic spectra ranged from 11 to 75%. The plaques formed by most phages were small and transparent, while one of them formed relatively large plaques with a clearly marked 'halo' effect. Based on Transmission Electron Microscopy (TEM), most of our phages have been classified as siphoviruses (only one phage was classified as a podovirus). All phages have icosahedral capsid symmetry, and 11 of them have a long tail. Optimal multiplicity of infections (MOIs) and the adsorption rate were also determined. MOI values varied depending on the phage-from 0.001 to 10. Based on similarities to known bacteriophages, our A. baumannii-specific phages have been proposed to belong to the Beijerinckvirinae and Junivirinae subfamilies. This study provides an additional tool in the fight against this important pathogen and may boost the interest in phage therapy as an alternative and supplement to the current antibiotics.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
10
|
Aggarwal S, Dhall A, Patiyal S, Choudhury S, Arora A, Raghava GPS. An ensemble method for prediction of phage-based therapy against bacterial infections. Front Microbiol 2023; 14:1148579. [PMID: 37032893 PMCID: PMC10076811 DOI: 10.3389/fmicb.2023.1148579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Phage therapy is a viable alternative to antibiotics for treating microbial infections, particularly managing drug-resistant strains of bacteria. One of the major challenges in designing phage-based therapy is to identify the most appropriate potential phage candidate to treat bacterial infections. In this study, an attempt has been made to predict phage-host interactions with high accuracy to identify the potential bacteriophage that can be used for treating a bacterial infection. The developed models have been created using a training dataset containing 826 phage- host interactions, and have been evaluated on a validation dataset comprising 1,201 phage-host interactions. Firstly, alignment-based models have been developed using similarity between phage-phage (BLASTPhage), host-host (BLASTHost) and phage-CRISPR (CRISPRPred), where we achieved accuracy between 42.4-66.2% for BLASTPhage, 55-78.4% for BLASTHost, and 43.7-80.2% for CRISPRPred across five taxonomic levels. Secondly, alignment free models have been developed using machine learning techniques. Thirdly, hybrid models have been developed by integrating the alignment-free models and the similarity-scores where we achieved maximum performance of (60.6-93.5%). Finally, an ensemble model has been developed that combines the hybrid and alignment-based models. Our ensemble model achieved highest accuracy of 67.9, 80.6, 85.5, 90, and 93.5% at Genus, Family, Order, Class, and Phylum levels on validation dataset. In order to serve the scientific community, we have also developed a webserver named PhageTB and provided a standalone software package (https://webs.iiitd.edu.in/raghava/phagetb/) for the same.
Collapse
Affiliation(s)
- Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- *Correspondence: Gajendra P. S. Raghava,
| |
Collapse
|
11
|
Acinetobacter Baumannii: More Ways to Die. Microbiol Res 2022; 261:127069. [DOI: 10.1016/j.micres.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
12
|
Badawy S, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol 2022; 167:1333-1341. [PMID: 35399144 PMCID: PMC9038960 DOI: 10.1007/s00705-022-05426-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
Abstract
Characterization of bacteriophages facilitates better understanding of their biology, host specificity, genomic diversity, and adaptation to their bacterial hosts. This, in turn, is important for the exploitation of phages for therapeutic purposes, as the use of uncharacterized phages may lead to treatment failure. The present study describes the isolation and characterization of a bacteriophage effective against the important clinical pathogen Escherichia coli, which shows increasing accumulation of antibiotic resistance. Phage fEg-Eco19, which is specific for a clinical E. coli strain, was isolated from an Egyptian sewage sample. Phage fEg-Eco19 formed clear, sharp-edged, round plaques. Electron microscopy showed that the isolated phage is tailed and therefore belongs to the order Caudovirales, and morphologically, it resembles siphoviruses. The diameter of the icosahedral head of fEg-Eco19 is 68 ± 2 nm, and the non-contractile tail length and diameter are 118 ± 0.2 and 13 ± 0.6 nm, respectively. The host range of the phage was found to be narrow, as it infected only two out of 137 clinical E. coli strains tested. The phage genome is 45,805 bp in length with a GC content of 50.3% and contains 76 predicted genes. Comparison of predicted and experimental restriction digestion patterns allowed rough mapping of the physical ends of the phage genome, which was confirmed using the PhageTerm tool. Annotation of the predicted genes revealed gene products belonging to several functional groups, including regulatory proteins, DNA packaging and phage structural proteins, host lysis proteins, and proteins involved in DNA/RNA metabolism and replication.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Peng W, Zeng F, Wu Z, Jin Z, Li W, Zhu M, Wang Q, Tong Y, Chen L, Bai Q. Isolation and genomic analysis of temperate phage 5W targeting multidrug-resistant Acinetobacter baumannii. Arch Microbiol 2021; 204:58. [DOI: 10.1007/s00203-021-02618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
|
14
|
Kim K, Islam MM, Kim D, Yun SH, Kim J, Lee JC, Shin M. Characterization of a Novel Phage ΦAb1656-2 and Its Endolysin with Higher Antimicrobial Activity against Multidrug-Resistant Acinetobacter baumannii. Viruses 2021; 13:v13091848. [PMID: 34578429 PMCID: PMC8473069 DOI: 10.3390/v13091848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen, which is a problem worldwide due to the emergence of a difficult-to-treat multidrug-resistant A. baumannii (MDRAB). Endolysins are hydrolytic enzymes produced by a bacteriophage that can be used as a potential therapeutic agent for multidrug-resistant bacterial infection in replacing antibiotics. Here, we isolated a novel bacteriophage through prophage induction using mitomycin C from clinical A. baumannii 1656-2. Morphologically, ΦAb1656-2 was identified as a Siphoviridae family bacteriophage, which can infect MDRAB. The whole genome of ΦAb1656-2 was sequenced, and it showed that it is 50.9 kb with a G + C content of 38.6% and 68 putative open reading frames (ORFs). A novel endolysin named AbEndolysin with an N-acetylmuramidase-containing catalytic domain was identified, expressed, and purified from ΦAb1656-2. Recombinant AbEndolysin showed significant antibacterial activity against MDRAB clinical strains without any outer membrane permeabilizer. These results suggest that AbEndolysin could represent a potential antimicrobial agent for treating MDRAB clinical isolates.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Dooyoung Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Korea Basic Science Institute,162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Korea;
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (K.K.); (M.M.I.); (D.K.); (J.K.); (J.C.L.)
- Correspondence: ; Tel.: +82-53-420-4841
| |
Collapse
|
15
|
Vahhabi A, Hasani A, Rezaee MA, Baradaran B, Hasani A, Samadi Kafil H, Abbaszadeh F, Dehghani L. A plethora of carbapenem resistance in Acinetobacter baumannii: no end to a long insidious genetic journey. J Chemother 2021; 33:137-155. [PMID: 33243098 DOI: 10.1080/1120009x.2020.1847421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Acinetobacter baumannii, notorious for causing nosocomial infections especially in patients admitted to intensive care unit (ICU) and burn units, is best at displaying resistance to all existing antibiotic classes. Consequences of high potential for antibiotic resistance has resulted in extensive drug or even pan drug resistant A. baumannii. Carbapenems, mainly imipenem and meropenem, the last resort for the treatment of A. baumannii infections have fallen short due to the emergence of carbapenem resistant A. baumannii (CRAB). Though enzymatic degradation by production of class D β-lactamases (Oxacillinases) and class B β-lactamases (Metallo β-lactamases) is the core mechanism of carbapenem resistance in A. baumannii; however over-expression of efflux pumps such as resistance-nodulation cell division (RND) family and variant form of porin proteins such as CarO have been implicated for CRAB inception. Transduction and outer membrane vesicles-mediated transfer play a role in carbapenemase determinants spread. Colistin, considered as the most promising antibacterial agent, nevertheless faces adverse effects flaws. Cefiderocol, eravacycline, new β-lactam antibiotics, non-β-lactam-β-lactamase inhibitors, polymyxin B-derived molecules and bacteriophages are some other new treatment options streamlined.
Collapse
Affiliation(s)
- Abolfazl Vahhabi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Alka Hasani
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Faeze Abbaszadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Leila Dehghani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
16
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
17
|
Isolation and characterization of the novel Pseudomonas stutzeri bacteriophage 8P. Arch Virol 2021; 166:601-606. [PMID: 33392816 DOI: 10.1007/s00705-020-04912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Bacteriophage 8P was isolated with a Pseudomonas stutzeri strain isolated from an oil reservoir as its host bacterium. The phage genome comprises 63,753 base pairs with a G+C content of 64.35. The phage encodes 63 predicted proteins, and 27 of them were functionally assigned. No tRNA genes were found. Comparative genomics analysis showed that 8P displayed some relatedness to F116-like phages (78% identity, 20% query coverage). The genome has very low sequence similarity to the other phage genomes in the GenBank database and Viral Sequence Database. Based on whole-genome analysis and transmission electron microscopy imaging, 8P is proposed to be a member of a new species in the genus Hollowayvirus, family Podoviridae.
Collapse
|