1
|
Soler Y, Rodriguez M, Austin D, Gineste C, Gelber C, El-Hage N. SERPIN-Derived Small Peptide (SP16) as a Potential Therapeutic Agent against HIV-Induced Inflammatory Molecules and Viral Replication in Cells of the Central Nervous System. Cells 2023; 12:cells12040632. [PMID: 36831299 PMCID: PMC9954444 DOI: 10.3390/cells12040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the success of combined antiretroviral therapy (cART) increasing the survival rate in human immunodeficiency virus (HIV) patients, low levels of viremia persist in the brain of patients leading to glia (microglia and astrocytes)-induced neuroinflammation and consequently, the reactivation of HIV and neuronal injury. Here, we tested the therapeutic efficacy of a Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) agonistic small peptide drug (SP16) in attenuating HIV replication and the secretion of inflammatory molecules in brain reservoirs. SP16 was developed by Serpin Pharma and is derived from the pentapeptide sequence of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The SP16 peptide sequence was subsequently modified to improve the stability, bioavailability, efficacy, and binding to LRP-1; a scavenger regulatory receptor that internalizes ligands to induce anti-viral, anti-inflammatory, and pro-survival signals. Using glial cells infected with HIV, we showed that: (i) SP16 attenuated viral-induced secretion of pro-inflammatory molecules; and (ii) SP16 attenuated viral replication. Using an artificial 3D blood-brain barrier (BBB) system, we showed that: (i) SP16 was transported across the BBB; and (ii) restored the permeability of the BBB compromised by HIV. Mechanistically, we showed that SP16 interaction with LRP-1 and binding lead to: (i) down-regulation in the expression levels of nuclear factor-kappa beta (NF-κB); and (ii) up-regulation in the expression levels of Akt. Using an in vivo mouse model, we showed that SP16 was transported across the BBB after intranasal delivery, while animals infected with EcoHIV undergo a reduction in (i) viral replication and (ii) viral secreted inflammatory molecules, after exposure to SP16 and antiretrovirals. Overall, these studies confirm a therapeutic response of SP16 against HIV-associated inflammatory effects in the brain.
Collapse
Affiliation(s)
- Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Dana Austin
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cyrille Gineste
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cohava Gelber
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
2
|
Winkler CW, Clancy CS, Rosenke R, Peterson KE. Zika virus vertical transmission in interferon receptor1-antagonized Rag1 -/- mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathol Commun 2022; 10:46. [PMID: 35379362 PMCID: PMC8981715 DOI: 10.1186/s40478-022-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The mechanisms by which vertically transmitted Zika virus (ZIKV) causes postnatal brain development abnormalities and congenital disease remain poorly understood. Here, we optimized the established anti-IFNAR1 treated, Rag1-/- (AIR) mouse model of ZIKV infection to examine the consequence of vertical transmission on neonate survival and postnatal brain development. We found that modulating the infectious dose and the frequency of anti-IFNAR1 treatment of pregnant mice (termed AIRlow mice) prolonged neonatal survival allowing for pathogenesis studies of brain tissues at critical postnatal time points. Postnatal AIRlow mice all had chronic ZIKV infection in the brain that was associated with decreased cortical thickness and cerebellar volume, increased gliosis, and higher levels of cell death in many brain areas including cortex, hippocampus and cerebellum when compared to controls. Interestingly, despite active infection and brain abnormalities, the neurodevelopmental program remained active in AIRlow mice as indicated by elevated mRNA expression of critical neurodevelopmental genes in the brain and enlargement of neural-progenitor rich regions of the cerebellum at a developmental time point analogous to birth in humans. Nevertheless, around the developmental time point when the brain is fully populated by neurons, AIRlow mice developed neurologic disease associated with persistent ZIKV infection in the brain, gliosis, and increased cell death. Together, these data show that vertically transmitted ZIKV infection in the brain of postnatal AIRlow mice strongly influences brain development resulting in structural abnormalities and cell death in multiple regions of the brain.
Collapse
|
3
|
The impact of Zika virus exposure on the placental proteomic profile. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166270. [PMID: 34582966 DOI: 10.1016/j.bbadis.2021.166270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Zika virus (ZIKV) infection has caused severe unexpected clinical outcomes in neonates and adults during the recent outbreak in Latin America, particularly in Brazil. Congenital malformations associated with ZIKV have been frequently reported; nevertheless, the mechanism of vertical transmission and the involvement of placental cells remains unclear. In this study, we applied quantitative proteomics analysis in a floating explant model of chorionic villi of human placental tissues incubated with ZIKV and with ZIKV pre-adsorbed with anti-ZIKV envelope protein. Proteomic data are available via ProteomeXchange with identifier PXD025764. Altered levels of proteins were involved in cell proliferation, apoptosis, inflammatory processes, and the integrin-cytoskeleton complex. Antibody-opsonized ZIKV particles differentially modulated the pattern of protein expression in placental cells; this phenomenon may play a pivotal role in determining the course of infection and the role of mixed infections. The expression of specific proteins was also evaluated by immunoperoxidase assays. These data fill gaps in our understanding of early events after ZIKV placental exposure and help identify infection control targets.
Collapse
|
4
|
Pereira GJDS, Leão AHFF, Erustes AG, Morais IBDM, Vrechi TADM, Zamarioli LDS, Pereira CAS, Marchioro LDO, Sperandio LP, Lins ÍVF, Piacentini M, Fimia GM, Reckziegel P, Smaili SS, Bincoletto C. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. Int J Mol Sci 2021; 22:4067. [PMID: 33920748 PMCID: PMC8071111 DOI: 10.3390/ijms22084067] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol. Thus, this review aims to highlight and discuss autophagy-related drugs for COVID-19, from in vitro to in vivo studies. We identified specific compounds that may modulate autophagy and exhibit antiviral properties. We hope that research initiatives and efforts will identify novel or "off-label" drugs that can be used to effectively treat patients infected with SARS-CoV-2, reducing the risk of mortality.
Collapse
Affiliation(s)
- Gustavo José da Silva Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Anderson Henrique França Figueredo Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ingrid Beatriz de Melo Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Talita Aparecida de Moraes Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Lucas dos Santos Zamarioli
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Cássia Arruda Souza Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Laís de Oliveira Marchioro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ísis Valeska Freire Lins
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Patrícia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| |
Collapse
|
5
|
Mechanistic Target of Rapamycin Signaling Activation Antagonizes Autophagy To Facilitate Zika Virus Replication. J Virol 2020; 94:JVI.01575-20. [PMID: 32878890 DOI: 10.1128/jvi.01575-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-transmitted flavivirus, is linked to microcephaly and other neurological defects in neonates and Guillain-Barré syndrome in adults. The molecular mechanisms regulating ZIKV infection and pathogenic outcomes are incompletely understood. Signaling by the mechanistic (mammalian) target of rapamycin (mTOR) kinase is important for cell survival and proliferation, and viruses are known to hijack this pathway for their replication. Here, we show that in human neuronal precursors and glial cells in culture, ZIKV infection activates both mTOR complex 1 (mTORC1) and mTORC2. Inhibition of mTOR kinase by Torin1 or rapamycin results in reduction in ZIKV protein expression and progeny production. Depletion of Raptor, the defining subunit of mTORC1, by small interfering RNA (siRNA) negatively affects ZIKV protein expression and viral replication. Although depletion of Rictor, the unique subunit of mTORC2, or the mTOR kinase itself also inhibits the viral processes, the extent of inhibition is less pronounced. Autophagy is transiently induced early by ZIKV infection, and impairment of autophagosome elongation by the class III phosphatidylinositol 3-kinase (PI3K) inhibitor 3-methyladenine (3-MA) enhances viral protein accumulation and progeny production. mTOR phosphorylates and inactivates ULK1 (S757) at later stages of ZIKV infection, suggesting a link between autophagy inhibition and mTOR activation by ZIKV. Accordingly, inhibition of ULK1 (by MRT68921) or autophagy (by 3-MA) reversed the effects of mTOR inhibition, leading to increased levels of ZIKV protein expression and progeny production. Our results demonstrate that ZIKV replication requires the activation of both mTORC1 and mTORC2, which negatively regulates autophagy to facilitate ZIKV replication.IMPORTANCE The re-emergence of Zika virus (ZIKV) and its association with neurological complications necessitates studies on the molecular mechanisms that regulate ZIKV pathogenesis. The mTOR signaling cascade is tightly regulated and central to normal neuronal development and survival. Disruption of mTOR signaling can result in neurological abnormalities. In the studies reported here, we demonstrate for the first time that ZIKV infection results in activation of both mTORC1 and mTORC2 to promote virus replication. Although autophagy is activated early in infection to counter virus replication, it is subsequently suppressed by mTOR. These results reveal critical roles of mTOR signaling and autophagy in ZIKV infection and point to a possible mechanism underlying ZIKV-induced pathogenesis. Elucidating the role of mTOR signaling in ZIKV infection will provide insights into the mechanisms of ZIKV-induced neurological complications and potential targets for therapeutic approaches.
Collapse
|
6
|
Suzukawa AA, Zanluca C, Jorge NAN, de Noronha L, Koishi AC, de Paula CBV, Rebutini PZ, Nagashima S, Hansel-Frose AFF, Parreira VSC, Bordignon J, MacDonald MR, Rice CM, Passetti F, Duarte Dos Santos CN. Downregulation of IGF2 expression in third trimester placental tissues from Zika virus infected women in Brazil. J Infect 2020; 81:766-775. [PMID: 32987099 DOI: 10.1016/j.jinf.2020.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Screening for genes differentially expressed in placental tissues, aiming to identify transcriptional signatures that may be involved in ZIKV congenital pathogenesis. METHODS Transcriptome data from placental tissues of pregnant women naturally infected with Zika virus during the third trimester were compared to those from women who tested negative for Zika infection. The findings were validated using both a cell culture model and an immunohistochemistry/morphological analysis of naturally infected placental tissues. RESULTS Transcriptome analysis revealed that Zika virus infection induces downregulation of insulin-like growth factor II (IGF2) gene, an essential factor for fetal development. The Caco-2 cell culture model that constitutively expresses IGF2 was used for the transcriptome validation. Asiatic and African Zika virus strains infection caused downregulated IGF2 gene expression in Caco-2 cells, whereas other flaviviruses, such as dengue serotype 1, West Nile and wild-type yellow fever viruses, had no effect on this gene expression. Immunohistochemical assays on decidual tissues corroborated our transcriptome analysis, showing that IGF2 is reduced in the decidua of Zika virus-infected women. CONCLUSIONS Our results draw attention to IGF2 modulation in uterine tissues, and this finding is expected to support future studies on strategies to ameliorate the harmful effects of Zika virus infection during pregnancy.
Collapse
Affiliation(s)
- Andréia A Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Natasha A N Jorge
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Lucia de Noronha
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Andrea C Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Caroline B V de Paula
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Patrícia Z Rebutini
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Seigo Nagashima
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Aruana F F Hansel-Frose
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Vinícius S C Parreira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Fabio Passetti
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil.
| | | |
Collapse
|